Research Article
BibTex RIS Cite

Diş eti simülasyon modelinde 980 nm diyot lazerin in vitro termal etkisi

Year 2024, , 10 - 14, 30.04.2024
https://doi.org/10.61139/ijdor.1436643

Abstract

Periodontolojide fotobiyomodülasyon tedavisi uygulamaları, rejenerasyonun hızlanması ve antiinflamatuvar etkileri nedeniyle artmaktadır. Ayrıca lazer uygulaması sırasında ısı artışı olduğu bilinmektedir. Bu çalışmanın amacı, yeni bir diş eti simülasyon yönteminde farklı parametrelerle 980 nm diyot lazer kullanırken sıcaklık değişimlerini ölçmektir.

References

  • 1.Taylor R, Shklar G, Roeber F. The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals. Oral Surgery, Oral Med Oral Pathol 1965; 19(6), 786–795.
  • 2. Blayden J, Mott A. Soft-Tissue Lasers in Dental Hygiene. John Wiley & Sons; 2012:124.
  • 3. Taylor N. LASER: The inventor, the Nobel laureate, and the thirty-year patent war. 2002:157-166.
  • 4. Newman MG, Takei H, Klokkevold PR, Carranza FA. Carranza’s Clinical Periodontology.; 2014:1958-1962.
  • 5. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater 2014;30(5):465-475.
  • 6. Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl) 1968;9(5):621-626.
  • 7. Prindeze NJ, Moffatt LT, Shupp JW. Minireview Mechanisms of action for light therapy : a review of molecular interactions. 2012;237(11):1241-8.
  • 8. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-Melanin Colloidal Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy. Adv Mater 2013;25(9):1353-1359.
  • 9. Demirturk-Gocgun O, Baser U, Aykol-Sahin G, Dinccag N, Issever H, Yalcin F. Role of Low-Level Laser Therapy as an Adjunct to Initial Periodontal Treatment in Type 2 Diabetic Patients: A Split-Mouth, Randomized, Controlled Clinical Trial. Photomed Laser Surg 2017;35(2):111-115.
  • 10. Gündoğar H, Şenyurt SZ, Erciyas K, Yalım M, Üstün K. The effect of low-level laser therapy on non-surgical periodontal treatment: a randomized controlled, single-blind, split-mouth clinical trial. Lasers Med Sci 2016;31(9):1767-1773.
  • 11. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent 1983;50(1):101-107.
  • 12. Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma: A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg Hand Surg 1984;18(3):261-268.
  • 13. Peplow P V, Chung T-Y, Baxter GD. Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 2010;28 Suppl 1:S3-40.
  • 14. Souza-Barros L, Dhaidan G, Maunula M, et al. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics. Lasers Surg Med 2018;50(4):291-301.
  • 15. Leja C, Geminiani A, Caton J, Romanos GE. Thermodynamic effects of laser irradiation of implants placed in bone: An in vitro study. Lasers Med Sci 2013;28(6):1435-1440.
  • 16. Borges AB, Batista GR, Arantes PT, Wiegand A, Attin T, Torres CRG. Influence of simulated pulpal pressure on efficacy of bleaching gels. J Contemp Dent Pract 2014;15(4):407-412.

The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model

Year 2024, , 10 - 14, 30.04.2024
https://doi.org/10.61139/ijdor.1436643

Abstract

In periodontology, photobiomodulation therapy applications are increasing due to their acceleration of regeneration and anti-inflammatory effects. It is known that there is an increase in temperature during laser therapy. The aim of this study is to measure the temperature changes while using a 980-nm diode laser with different parameters in a new gingival simulation method.

References

  • 1.Taylor R, Shklar G, Roeber F. The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals. Oral Surgery, Oral Med Oral Pathol 1965; 19(6), 786–795.
  • 2. Blayden J, Mott A. Soft-Tissue Lasers in Dental Hygiene. John Wiley & Sons; 2012:124.
  • 3. Taylor N. LASER: The inventor, the Nobel laureate, and the thirty-year patent war. 2002:157-166.
  • 4. Newman MG, Takei H, Klokkevold PR, Carranza FA. Carranza’s Clinical Periodontology.; 2014:1958-1962.
  • 5. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater 2014;30(5):465-475.
  • 6. Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl) 1968;9(5):621-626.
  • 7. Prindeze NJ, Moffatt LT, Shupp JW. Minireview Mechanisms of action for light therapy : a review of molecular interactions. 2012;237(11):1241-8.
  • 8. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-Melanin Colloidal Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy. Adv Mater 2013;25(9):1353-1359.
  • 9. Demirturk-Gocgun O, Baser U, Aykol-Sahin G, Dinccag N, Issever H, Yalcin F. Role of Low-Level Laser Therapy as an Adjunct to Initial Periodontal Treatment in Type 2 Diabetic Patients: A Split-Mouth, Randomized, Controlled Clinical Trial. Photomed Laser Surg 2017;35(2):111-115.
  • 10. Gündoğar H, Şenyurt SZ, Erciyas K, Yalım M, Üstün K. The effect of low-level laser therapy on non-surgical periodontal treatment: a randomized controlled, single-blind, split-mouth clinical trial. Lasers Med Sci 2016;31(9):1767-1773.
  • 11. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent 1983;50(1):101-107.
  • 12. Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma: A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg Hand Surg 1984;18(3):261-268.
  • 13. Peplow P V, Chung T-Y, Baxter GD. Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 2010;28 Suppl 1:S3-40.
  • 14. Souza-Barros L, Dhaidan G, Maunula M, et al. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics. Lasers Surg Med 2018;50(4):291-301.
  • 15. Leja C, Geminiani A, Caton J, Romanos GE. Thermodynamic effects of laser irradiation of implants placed in bone: An in vitro study. Lasers Med Sci 2013;28(6):1435-1440.
  • 16. Borges AB, Batista GR, Arantes PT, Wiegand A, Attin T, Torres CRG. Influence of simulated pulpal pressure on efficacy of bleaching gels. J Contemp Dent Pract 2014;15(4):407-412.
There are 16 citations in total.

Details

Primary Language English
Subjects Periodontics, Dentistry (Other)
Journal Section Research Articles
Authors

Mehmet Oğuzhan Ergin 0000-0003-3216-9698

Hasan Gündoğar 0000-0003-3853-2689

Nuray Zulkadir Ergin 0000-0001-5342-7014

Mert Özalpay 0000-0001-5030-6778

Publication Date April 30, 2024
Submission Date February 13, 2024
Acceptance Date April 1, 2024
Published in Issue Year 2024

Cite

APA Ergin, M. O., Gündoğar, H., Zulkadir Ergin, N., Özalpay, M. (2024). The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model. HRU International Journal of Dentistry and Oral Research, 4(1), 10-14. https://doi.org/10.61139/ijdor.1436643
AMA Ergin MO, Gündoğar H, Zulkadir Ergin N, Özalpay M. The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model. HRU Int J Dent Oral Res. April 2024;4(1):10-14. doi:10.61139/ijdor.1436643
Chicago Ergin, Mehmet Oğuzhan, Hasan Gündoğar, Nuray Zulkadir Ergin, and Mert Özalpay. “The in Vitro Thermal Effect of a 980-Nm Diode Laser in a Gingival Simulation Model”. HRU International Journal of Dentistry and Oral Research 4, no. 1 (April 2024): 10-14. https://doi.org/10.61139/ijdor.1436643.
EndNote Ergin MO, Gündoğar H, Zulkadir Ergin N, Özalpay M (April 1, 2024) The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model. HRU International Journal of Dentistry and Oral Research 4 1 10–14.
IEEE M. O. Ergin, H. Gündoğar, N. Zulkadir Ergin, and M. Özalpay, “The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model”, HRU Int J Dent Oral Res, vol. 4, no. 1, pp. 10–14, 2024, doi: 10.61139/ijdor.1436643.
ISNAD Ergin, Mehmet Oğuzhan et al. “The in Vitro Thermal Effect of a 980-Nm Diode Laser in a Gingival Simulation Model”. HRU International Journal of Dentistry and Oral Research 4/1 (April 2024), 10-14. https://doi.org/10.61139/ijdor.1436643.
JAMA Ergin MO, Gündoğar H, Zulkadir Ergin N, Özalpay M. The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model. HRU Int J Dent Oral Res. 2024;4:10–14.
MLA Ergin, Mehmet Oğuzhan et al. “The in Vitro Thermal Effect of a 980-Nm Diode Laser in a Gingival Simulation Model”. HRU International Journal of Dentistry and Oral Research, vol. 4, no. 1, 2024, pp. 10-14, doi:10.61139/ijdor.1436643.
Vancouver Ergin MO, Gündoğar H, Zulkadir Ergin N, Özalpay M. The in vitro thermal effect of a 980-nm diode laser in a gingival simulation model. HRU Int J Dent Oral Res. 2024;4(1):10-4.