Research Article
BibTex RIS Cite
Year 2024, , 114 - 118, 31.12.2024
https://doi.org/10.61139/ijdor.1564410

Abstract

Project Number

Russian Science Foundation 12/04/2024 No. 24-25-20098, egional budget (Volgograd region) 31/05/2024 No. 10.

References

  • 1. Hashimoto S, Kosaka T, Nakai M, et al. A lower maximum bite force is a risk factor for develop-ing cardiovascular disease: The Suita study. Sci. Re: 2021;11(1):7671. doi: 10.1038/s41598-021-87252-5.
  • 2. Liljestrand JM, Havulinna AS, Paju S, et al. Missing teeth predict incident cardiovascular events, diabetes, and death. J. Dent. Res. 2015;94:1055-62. doi: 10.1177/0022034515586352.
  • 3. Kosaka T, Kida M, Kikui M, et al. Factors influencing the changes in masticatory performance: The Suita study. JDR Clin Trans Res. 2018;3(4):405-412. doi: 10.1177/2380084418785863.
  • 4. Minakuchi S, Tsuga K, Ikebe K, et al. Oral hypofunction in the older population: Position paper of the Japanese Society of Gerodontology in 2016. Gerodontology. 2018;35(4):317-324. doi: 10.1111/ger.12347.
  • 5. Ohta M, Ryu M, Ogami K, et al. Oral function for diagnosing oral hypofunction in healthy young adults: A comparison with the literature. Bull Tokyo Dent Coll. 2023;64(3):105-111. doi: 10.2209/tdcpublication.2022-0022.
  • 6. Makedonova YA, Gavrikova LM, Dyachenko SV, Dyachenko DY. Efficiency of telemedical technologies in treatment of patients with the oral mucosa diseases. Journal of Volgograd State Medical University. 2021;18(4):76-81. doi: 10.19163/1994-9480-2021-4(80)-76-81.
  • 7. Iwasaki M, Maeda I, Kokubo Y, et al. Capacitive-type pressure-mapping sensor for measuring bite force. Int J Environ Res Public Health. 2022;19(3): 1273. doi: 10.3390/ijerph19031273.
  • 8. Gu Y, Bai Y, Xie X. Bite force transducers and measurement devices. Front Bioeng Biotechnol. 2021;9:665081. doi: 10.3389/fbioe.2021.665081.
  • 9. Al-Gunaid TH. Bite force—what we should know: A literature review. Int. J. Orthod. Rehabil. 2019;10(4):168. doi: 10.4103/ijor.ijor _33_19.
  • 10. Alam MK, Alfawzan AA. Maximum voluntary molar bite force in subjects with malocclusion: multifactor analysis. J. Int. Med. Res. 2020;48(10):300060520962943. doi: 10.1177/0300060520962943.
  • 11. Van Vuuren L.J, van Vuuren W.A.J, Broadbent J.M., et al. Development of a bite force trans-ducer for measuring maximum voluntary bite forces between individual opposing tooth surfac-es. J. Mech. Behav. Biomed. Mater. 2020;109(4):103846. doi: 10.1016/j.jmbbm.2020.103846.
  • 12. Kim JH, Han JH, Park CW, et al. Enhancement of withstand voltage in silicon strain gauges using a thin alkali-free glass. Sensors (Basel). 2020;20:3024. doi: 10.3390/s20113024.
  • 13. Verma TP, Kumathalli KI, Jain V, et al. Bite force recording devices – a review. J. Clin. Diagn. Res. 2017;11(9):ZE01–05. doi: 10.7860/JCDR/2017/27379.10450.
  • 14. Vilela M, Picinato-Pirola MNC, Giglio LD, et al. Força de mordida em crianças com mordida cruzada posterior. Audiol. Commun. Res. 2017;22:1723. doi:10.1590/2317-6431-2016-1723.
  • 15. Chen M, Luo W, Xu Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nat. Commun. 2019;10(1):4024 doi:10.1038/s41467-019-12030-x.
  • 16. Song P, Si C, Zhang M, et al. A novel piezoresistive MEMS pressure sensors based on tempo-rary bonding technology. Sensors (Basel). 2020;20:337. doi: 10.3390/s20020337.
  • 17. Sattayasoonthorn P, Suthakorn J, Chamnanvej S. On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement. Biomed. Tech. (Berl.). 2019;64:543–53. doi: 10.1515/bmt-2018-0029.
  • 18. Wang H, Wang L, Sun N, et al. Quantitative comparison of the performance of piezoresistive, piezoelectric, acceleration, and optical pulse wave sensors. Front. Physiol. 2020;10:1563. doi: 10.3389/fphys.2019.01563.
  • 19. Nandasiri GK, Shahidi AM, Dias T. Study of three interface pressure measurement systems used in the treatment of venous disease. Sensors (Basel). 2020;20(20):5777. doi: 10.3390/s20205777.
  • 20. Ibraheem E, El-sisy A. Comparing maximum bite force for diabetic patients wearing two dif-ferent types of removable partial dentures: a randomized cross-over study. Int. J. Adv. Res. 2020;8(4):198–204. doi: 10.21474/ijar01/10767.
  • 21. Peng X, Hu L, Liu W, et al. Model-based analysis and regulating approach of air-coupled transducers with spurious resonance. Sensors (Basel). 2020;20(21):6184. doi: 10.3390/s20216184.
  • 22. Bing L, Mito T, Yoda N, et al. Effect of peri-implant bone resorption on mechanical stress in the implant body: In vivo measured load-based finite element analysis. J. Oral Rehabil. 2020;47(12):1566–1573. doi: 10.1111/joor.13097.
  • 23. Yu. A. Makedonov A., Yarygina E.N., Alexandrov A.V., Chizhikova T.V., Dyachenko Yu.A., Filimonova O.N. Gradation of degrees of severity of hypertonus of the masticatory muscles of Endodontics Today. 2024;22(1):80-85 (In Russ). https://doi.org/10.36377/ET-0006.
  • 24. Liu Y, Zheng H, Zhao L, et al. Electronic skin from high-throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer. Research (Wash DC.) 2020;2020(1):1-11. doi: 10.34133/2020/1085417.
  • 25. Abdolmaleki H, Agarwala S. PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics. Polymers (Basel). 2020;12:2430. doi: 10.3390/polym12102430.
  • 26. Oh HJ, Kim DK, Choi YC, et al. Fabrication of piezoelectric poly (L-lactic acid)/BaTiO3 fibre by the melt-spinning process. Sci. Re: 2020;10(1):16339. doi: 10.1038/s41598-020-73261-3.
  • 27. Heuser F, Bourauel C, Stark H, et al. Clinical investigations of the comparability of different methods used to display occlusal contact points. Int. J. Comput. Dent. 2020;23(3):245–255. PMID: 32789312.
  • 28. Mowbray SE, Amiri AM. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics (Basel). 2019;9(1):23. doi: 10.3390/diagnostics9010023.
  • 29. Umesh S, Padma S, Asokan S, et al. Fiber bragg grating based bite force measurement. J. Bio-mech. 2016;49:2877–2881. 10.1016/j.jbiomech.2016.06.036.
  • 30. Gallimulina LR, Morozov OG, Salikhova MA, et al. Sensors for rostral pressure monitoring based on Bragg gratings. NTV: 2016;3:94-96. (In Russ.). eLIBRARY ID: 26217804.
  • 31. Gayvoronskaya TV, Arutyunov AV, Ayupova FS, et al. Fiber-optic systems for the diagnosis of dental pathology: a review. Part I. Clinical Dentistry (Russia). 2024;27(1):136—143 (In Russ). doi: 10.37988/1811-153X_2024_1_136.
  • 32. Yarygina E.N., Makedonova Yu.A., Devyatchenko L.A., Kopytova M.V., Afanasyeva O.Yu., Pavlova-Adamovich A.G. Effectiveness of relief of masticatory muscle spasticity in patients with myofascial pain syndrome of Endodontics Today. 2024;22(2):154–161. (In Russ.). https://doi.org/10.36377/ET-0018.
  • 33. Vokulova YuA, Zhulev EN, Vel’makina IV, et al. A method for correction of occlusal relation-ships between dental rows using digital technology. Siberian Medical Review. 2022;(4):83-88. (In Russ.). doi: 10.20333/25000136-2022-4-83-88.
  • 34. Pichugina EN, Arushanyan AR, Konnov VV, et al. A method of evaluating occlusal relation-ships of the teeth dentition an. The Journal of scientific articles “Health and Education Millen-nium”. 2016;18,11:52-54. (In Russ.). eLIBRARY ID: 27663134.
  • 35. Prygunov KA, Abolmasov NN, Adaeva IA, et al. Digital method of index evaluation of oc-clusal contacts of lateral teeth. Clinical Dentistry (Russia). 2023;26(1):132—137 (In Russ.). doi: 10.37988/1811-153X_2023_1_132.
  • 36. Gao J, Su Z, Liu L. Design and implement strategy of wireless bite force device. Bioengineer-ing (Basel). 2023;10(5):507. doi: 10.3390/bioengineering10050507.
  • 37. Yarygina E.N., Shkarin V.V., Makedonova Yu.A., Pavlova-Adamovich A.G., Mukhaev H.H. Criteria for the effectiveness of treatment of patients with myofascial pain syndrome of chewing muscles // Medico-pharmaceutical journal "Pulse". 2024;26(8):87-92. (In Russ.). http://dx.doi.org//10.26787/nydha-2686-6838-2024-26-8-87-92.
  • 38. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020;99:769–774. doi: 10.1177/0022034520915714.
  • 39. Kazarian GG, Bekreev VV, Ivanov SYu, et al. Possibilities of ultrasound diagnostics and the use of artificial neural network to assess the morphology and size of the articular disc of the temporomandibular joint. Clinical Dentistry (Russia). 2024;27(1):54—59. (In Russ). doi: 10.37988/1811-153X_2024_1_54.
  • 40. Yalniz IZ, Jégou H, Chen K, et al. Billionscale semi-supervised learning for image classification. arXiv. 2019:1905.00546 (preprint). doi: 10.48550/arXiv.1905.00546.

Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome

Year 2024, , 114 - 118, 31.12.2024
https://doi.org/10.61139/ijdor.1564410

Abstract

Introduction. In recent years, there has been a growing interest in digital methods for diagnosing occlusive imbalance both in Russia and abroad. The development of technologies in this area opens up new prospects for improving the diagnosis and treatment of dental diseases.
The purpose of this study is to analyze existing digital methods and devices for diagnosing occlusive imbalance, identify their advantages and disadvantages, and assess the prospects for their implementation in clinical practice.
Materials and methods: To achieve this goal, a systematic review of 40 scientific publications covering the period from 2016 to 2024 was conducted. The study includes both domestic and international sources from leading scientific electronic libraries and databases. Data on various types of digital devices such as strain gauges, piezoresistive and piezoelectric transducers, pressure sensors and fiber optic sensors are analyzed. Methods of index evaluation of occlusal contacts have also been studied.
Results and discussion: The analysis showed that existing digital technologies for the diagnosis of occlusive imbalance have significant potential to improve the accuracy and effectiveness of diagnosis. Load cells, piezoresistive and piezoelectric transducers, as well as pressure sensors and fiber optic sensors provide various approaches to measuring the occlusion force. Despite their high sensitivity and accuracy, the implementation of these technologies faces challenges such as the complexity of equipping clinics and the insufficient level of digital competencies among doctors.
Conclusion: Digital diagnostic technologies for occlusal imbalance have significant potential to improve dental practice. However, for the successful implementation of these methods, it is necessary to overcome the existing difficulties associated with equipment and training of specialists. Further efforts in the field of digital technology development, process automation and advanced training of dentists can contribute to more effective diagnosis and treatment of occlusion disorders.

Ethical Statement

№089 15/04/2024 IRB 00005839 IORG0004900 Volgograd State Medical University

Project Number

Russian Science Foundation 12/04/2024 No. 24-25-20098, egional budget (Volgograd region) 31/05/2024 No. 10.

Thanks

The study was conducted as part of a scientific project aimed at developing a methodology for neural network analysis and forecasting the risk of occlusal relationship disorders within the framework of implementing the Russian Science Foundation grant No. 24-25-20098 and the Agreement on subsidies from the regional budget (Volgograd region) dated May 31, 2024, No. 10.

References

  • 1. Hashimoto S, Kosaka T, Nakai M, et al. A lower maximum bite force is a risk factor for develop-ing cardiovascular disease: The Suita study. Sci. Re: 2021;11(1):7671. doi: 10.1038/s41598-021-87252-5.
  • 2. Liljestrand JM, Havulinna AS, Paju S, et al. Missing teeth predict incident cardiovascular events, diabetes, and death. J. Dent. Res. 2015;94:1055-62. doi: 10.1177/0022034515586352.
  • 3. Kosaka T, Kida M, Kikui M, et al. Factors influencing the changes in masticatory performance: The Suita study. JDR Clin Trans Res. 2018;3(4):405-412. doi: 10.1177/2380084418785863.
  • 4. Minakuchi S, Tsuga K, Ikebe K, et al. Oral hypofunction in the older population: Position paper of the Japanese Society of Gerodontology in 2016. Gerodontology. 2018;35(4):317-324. doi: 10.1111/ger.12347.
  • 5. Ohta M, Ryu M, Ogami K, et al. Oral function for diagnosing oral hypofunction in healthy young adults: A comparison with the literature. Bull Tokyo Dent Coll. 2023;64(3):105-111. doi: 10.2209/tdcpublication.2022-0022.
  • 6. Makedonova YA, Gavrikova LM, Dyachenko SV, Dyachenko DY. Efficiency of telemedical technologies in treatment of patients with the oral mucosa diseases. Journal of Volgograd State Medical University. 2021;18(4):76-81. doi: 10.19163/1994-9480-2021-4(80)-76-81.
  • 7. Iwasaki M, Maeda I, Kokubo Y, et al. Capacitive-type pressure-mapping sensor for measuring bite force. Int J Environ Res Public Health. 2022;19(3): 1273. doi: 10.3390/ijerph19031273.
  • 8. Gu Y, Bai Y, Xie X. Bite force transducers and measurement devices. Front Bioeng Biotechnol. 2021;9:665081. doi: 10.3389/fbioe.2021.665081.
  • 9. Al-Gunaid TH. Bite force—what we should know: A literature review. Int. J. Orthod. Rehabil. 2019;10(4):168. doi: 10.4103/ijor.ijor _33_19.
  • 10. Alam MK, Alfawzan AA. Maximum voluntary molar bite force in subjects with malocclusion: multifactor analysis. J. Int. Med. Res. 2020;48(10):300060520962943. doi: 10.1177/0300060520962943.
  • 11. Van Vuuren L.J, van Vuuren W.A.J, Broadbent J.M., et al. Development of a bite force trans-ducer for measuring maximum voluntary bite forces between individual opposing tooth surfac-es. J. Mech. Behav. Biomed. Mater. 2020;109(4):103846. doi: 10.1016/j.jmbbm.2020.103846.
  • 12. Kim JH, Han JH, Park CW, et al. Enhancement of withstand voltage in silicon strain gauges using a thin alkali-free glass. Sensors (Basel). 2020;20:3024. doi: 10.3390/s20113024.
  • 13. Verma TP, Kumathalli KI, Jain V, et al. Bite force recording devices – a review. J. Clin. Diagn. Res. 2017;11(9):ZE01–05. doi: 10.7860/JCDR/2017/27379.10450.
  • 14. Vilela M, Picinato-Pirola MNC, Giglio LD, et al. Força de mordida em crianças com mordida cruzada posterior. Audiol. Commun. Res. 2017;22:1723. doi:10.1590/2317-6431-2016-1723.
  • 15. Chen M, Luo W, Xu Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nat. Commun. 2019;10(1):4024 doi:10.1038/s41467-019-12030-x.
  • 16. Song P, Si C, Zhang M, et al. A novel piezoresistive MEMS pressure sensors based on tempo-rary bonding technology. Sensors (Basel). 2020;20:337. doi: 10.3390/s20020337.
  • 17. Sattayasoonthorn P, Suthakorn J, Chamnanvej S. On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement. Biomed. Tech. (Berl.). 2019;64:543–53. doi: 10.1515/bmt-2018-0029.
  • 18. Wang H, Wang L, Sun N, et al. Quantitative comparison of the performance of piezoresistive, piezoelectric, acceleration, and optical pulse wave sensors. Front. Physiol. 2020;10:1563. doi: 10.3389/fphys.2019.01563.
  • 19. Nandasiri GK, Shahidi AM, Dias T. Study of three interface pressure measurement systems used in the treatment of venous disease. Sensors (Basel). 2020;20(20):5777. doi: 10.3390/s20205777.
  • 20. Ibraheem E, El-sisy A. Comparing maximum bite force for diabetic patients wearing two dif-ferent types of removable partial dentures: a randomized cross-over study. Int. J. Adv. Res. 2020;8(4):198–204. doi: 10.21474/ijar01/10767.
  • 21. Peng X, Hu L, Liu W, et al. Model-based analysis and regulating approach of air-coupled transducers with spurious resonance. Sensors (Basel). 2020;20(21):6184. doi: 10.3390/s20216184.
  • 22. Bing L, Mito T, Yoda N, et al. Effect of peri-implant bone resorption on mechanical stress in the implant body: In vivo measured load-based finite element analysis. J. Oral Rehabil. 2020;47(12):1566–1573. doi: 10.1111/joor.13097.
  • 23. Yu. A. Makedonov A., Yarygina E.N., Alexandrov A.V., Chizhikova T.V., Dyachenko Yu.A., Filimonova O.N. Gradation of degrees of severity of hypertonus of the masticatory muscles of Endodontics Today. 2024;22(1):80-85 (In Russ). https://doi.org/10.36377/ET-0006.
  • 24. Liu Y, Zheng H, Zhao L, et al. Electronic skin from high-throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer. Research (Wash DC.) 2020;2020(1):1-11. doi: 10.34133/2020/1085417.
  • 25. Abdolmaleki H, Agarwala S. PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics. Polymers (Basel). 2020;12:2430. doi: 10.3390/polym12102430.
  • 26. Oh HJ, Kim DK, Choi YC, et al. Fabrication of piezoelectric poly (L-lactic acid)/BaTiO3 fibre by the melt-spinning process. Sci. Re: 2020;10(1):16339. doi: 10.1038/s41598-020-73261-3.
  • 27. Heuser F, Bourauel C, Stark H, et al. Clinical investigations of the comparability of different methods used to display occlusal contact points. Int. J. Comput. Dent. 2020;23(3):245–255. PMID: 32789312.
  • 28. Mowbray SE, Amiri AM. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics (Basel). 2019;9(1):23. doi: 10.3390/diagnostics9010023.
  • 29. Umesh S, Padma S, Asokan S, et al. Fiber bragg grating based bite force measurement. J. Bio-mech. 2016;49:2877–2881. 10.1016/j.jbiomech.2016.06.036.
  • 30. Gallimulina LR, Morozov OG, Salikhova MA, et al. Sensors for rostral pressure monitoring based on Bragg gratings. NTV: 2016;3:94-96. (In Russ.). eLIBRARY ID: 26217804.
  • 31. Gayvoronskaya TV, Arutyunov AV, Ayupova FS, et al. Fiber-optic systems for the diagnosis of dental pathology: a review. Part I. Clinical Dentistry (Russia). 2024;27(1):136—143 (In Russ). doi: 10.37988/1811-153X_2024_1_136.
  • 32. Yarygina E.N., Makedonova Yu.A., Devyatchenko L.A., Kopytova M.V., Afanasyeva O.Yu., Pavlova-Adamovich A.G. Effectiveness of relief of masticatory muscle spasticity in patients with myofascial pain syndrome of Endodontics Today. 2024;22(2):154–161. (In Russ.). https://doi.org/10.36377/ET-0018.
  • 33. Vokulova YuA, Zhulev EN, Vel’makina IV, et al. A method for correction of occlusal relation-ships between dental rows using digital technology. Siberian Medical Review. 2022;(4):83-88. (In Russ.). doi: 10.20333/25000136-2022-4-83-88.
  • 34. Pichugina EN, Arushanyan AR, Konnov VV, et al. A method of evaluating occlusal relation-ships of the teeth dentition an. The Journal of scientific articles “Health and Education Millen-nium”. 2016;18,11:52-54. (In Russ.). eLIBRARY ID: 27663134.
  • 35. Prygunov KA, Abolmasov NN, Adaeva IA, et al. Digital method of index evaluation of oc-clusal contacts of lateral teeth. Clinical Dentistry (Russia). 2023;26(1):132—137 (In Russ.). doi: 10.37988/1811-153X_2023_1_132.
  • 36. Gao J, Su Z, Liu L. Design and implement strategy of wireless bite force device. Bioengineer-ing (Basel). 2023;10(5):507. doi: 10.3390/bioengineering10050507.
  • 37. Yarygina E.N., Shkarin V.V., Makedonova Yu.A., Pavlova-Adamovich A.G., Mukhaev H.H. Criteria for the effectiveness of treatment of patients with myofascial pain syndrome of chewing muscles // Medico-pharmaceutical journal "Pulse". 2024;26(8):87-92. (In Russ.). http://dx.doi.org//10.26787/nydha-2686-6838-2024-26-8-87-92.
  • 38. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020;99:769–774. doi: 10.1177/0022034520915714.
  • 39. Kazarian GG, Bekreev VV, Ivanov SYu, et al. Possibilities of ultrasound diagnostics and the use of artificial neural network to assess the morphology and size of the articular disc of the temporomandibular joint. Clinical Dentistry (Russia). 2024;27(1):54—59. (In Russ). doi: 10.37988/1811-153X_2024_1_54.
  • 40. Yalniz IZ, Jégou H, Chen K, et al. Billionscale semi-supervised learning for image classification. arXiv. 2019:1905.00546 (preprint). doi: 10.48550/arXiv.1905.00546.
There are 40 citations in total.

Details

Primary Language English
Subjects Oral Medicine and Pathology
Journal Section Research Articles
Authors

Vladimir Shkarin 0000-0002-4009-9733

Elena Yarygina 0000-0002-8478-9648

Makedonova Yuliya Alekseevna 0000-0002-5546-8570

Denis Dyachenko 0000-0003-4445-6109

Lyudmila Gavrikova 0000-0001-7063-2132

İzzet Yavuz 0000-0001-6953-747X

Project Number Russian Science Foundation 12/04/2024 No. 24-25-20098, egional budget (Volgograd region) 31/05/2024 No. 10.
Early Pub Date December 31, 2024
Publication Date December 31, 2024
Submission Date October 10, 2024
Acceptance Date December 11, 2024
Published in Issue Year 2024

Cite

APA Shkarin, V., Yarygina, E., Alekseevna, M. Y., Dyachenko, D., et al. (2024). Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome. HRU International Journal of Dentistry and Oral Research, 4(3), 114-118. https://doi.org/10.61139/ijdor.1564410
AMA Shkarin V, Yarygina E, Alekseevna MY, Dyachenko D, Gavrikova L, Yavuz İ. Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome. HRU Int J Dent Oral Res. December 2024;4(3):114-118. doi:10.61139/ijdor.1564410
Chicago Shkarin, Vladimir, Elena Yarygina, Makedonova Yuliya Alekseevna, Denis Dyachenko, Lyudmila Gavrikova, and İzzet Yavuz. “Modern Methods of Diagnosis of Occlusive Imbalance in Patients With Temporomandibular Myofascial Pain Syndrome”. HRU International Journal of Dentistry and Oral Research 4, no. 3 (December 2024): 114-18. https://doi.org/10.61139/ijdor.1564410.
EndNote Shkarin V, Yarygina E, Alekseevna MY, Dyachenko D, Gavrikova L, Yavuz İ (December 1, 2024) Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome. HRU International Journal of Dentistry and Oral Research 4 3 114–118.
IEEE V. Shkarin, E. Yarygina, M. Y. Alekseevna, D. Dyachenko, L. Gavrikova, and İ. Yavuz, “Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome”, HRU Int J Dent Oral Res, vol. 4, no. 3, pp. 114–118, 2024, doi: 10.61139/ijdor.1564410.
ISNAD Shkarin, Vladimir et al. “Modern Methods of Diagnosis of Occlusive Imbalance in Patients With Temporomandibular Myofascial Pain Syndrome”. HRU International Journal of Dentistry and Oral Research 4/3 (December 2024), 114-118. https://doi.org/10.61139/ijdor.1564410.
JAMA Shkarin V, Yarygina E, Alekseevna MY, Dyachenko D, Gavrikova L, Yavuz İ. Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome. HRU Int J Dent Oral Res. 2024;4:114–118.
MLA Shkarin, Vladimir et al. “Modern Methods of Diagnosis of Occlusive Imbalance in Patients With Temporomandibular Myofascial Pain Syndrome”. HRU International Journal of Dentistry and Oral Research, vol. 4, no. 3, 2024, pp. 114-8, doi:10.61139/ijdor.1564410.
Vancouver Shkarin V, Yarygina E, Alekseevna MY, Dyachenko D, Gavrikova L, Yavuz İ. Modern methods of diagnosis of occlusive imbalance in patients with temporomandibular myofascial pain syndrome. HRU Int J Dent Oral Res. 2024;4(3):114-8.