Research Article
BibTex RIS Cite

Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise

Year 2024, , 494 - 501, 25.05.2024
https://doi.org/10.33438/ijdshs.1406505

Abstract

The aim of our study is to find out whether the return rate of parasympathetic activity (PA) can be accelerated with auricular transcutaneous vagus nerve stimulation (TVNS). Pulmonary function test, ANS activity, pulse and blood pressure measurements were made. Individuals ran for 15 minutes. Those in the TVNS group received 5 minutes of auricular VNS. In the control group, headphones were attached but no current was given. After the end of their procedures, they were compared with pre-exercise. In the TVNS group, the pulse parameter was higher than in the initial measurement (p=0.001). There was a significant (p=0.007) rise in the FEV1 value in the VNS group. The sympathetic nervous system (SNS) index (p<0.05) increased in both groups when compared to the initial measurement, although there was no significant difference in the index values between the groups. The TVNS group showed an increase from the first measurement (p<0.05), but there was no significant difference in the parasympathetic nervous system (PNS) Index between the groups (p>0.05). The groups' values for the first and second measures were equal (p>0.05), and the root mean square of the successive differences (RMSSD) values did not reveal a significant difference. TVNS can improve respiratory parameters in healthy individuals in the acute period after exercise, and it seems that it can also increase activation in both the sympathetic and parasympathetic system. It can be stated that TVNS may lead to variable results in different circumstances in sports

References

  • Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental physiology, 95(3), 431-440. [PubMed]
  • Chen, J. L., Yeh, D. P., Lee, J. P., Chen, C. Y., Huang, C. Y., Lee, S. D., & Kuo, C. H. (2011). Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. The Journal of Strength & Conditioning Research, 25(6), 1546-1552. [PubMed]
  • Boullosa, D. A., Tuimil, J. L., Leicht, A. S., & Crespo-Salgado, J. J. (2009). Parasympathetic modulation and running performance in distance runners. The Journal of Strength & Conditioning Research, 23(2), 626-631. [PubMed] Mulders, D. M., de Vos, C. C., Vosman, I., & van Putten, M. J. (2015). The effect of vagus nerve stimulation on cardiorespiratory parameters during rest and exercise. Seizure, 33, 24-28. [PubMed]
  • Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain stimulation, 7(6), 871-877. [PubMed]
  • Antonino, D., Teixeira, A. L., Maia-Lopes, P. M., Souza, M. C., Sabino-Carvalho, J. L., Murray, A. R., &Vianna, L. C. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain stimulation, 10(5), 875-881. [PubMed]
  • Gifford, R. M., Boos, C. J., Reynolds, R. M., & Woods, D. R. (2018). Recovery time and heart rate variability following extreme endurance exercise in healthy women. Physiological reports, 6(21), e13905. [PubMed]
  • Michael, S., Jay, O., Graham, K. S., & Davis, G. M. (2017). Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Applied Physiology, Nutrition, and Metabolism, 42(8), 834-840. [PubMed]
  • Michael, S., Jay, O., Graham, K. S., & Davis, G. M. (2018). Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. Journal of science and medicine in sport, 21(10), 1079-1084. [PubMed]
  • Ebersole, K. T., Cornell, D. J., Flees, R. J., Shemelya, C. M., & Noel, S. E. (2020). Contribution of the autonomic nervous system to recovery in firefighters. Journal of athletic training, 55(9), 1001-1008. [PubMed]
  • Özden, A. V. (2023). Vagus nerve stimulation in peripheral targets. In Vagus Nerve Stimulation (pp. 1-29). New York, NY: Springer US.
  • Yuan, H., & Silberstein, S. D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache: The Journal of Head and Face Pain, 56(1), 71-78. [PubMed]
  • Busch, V., Zeman, F., Heckel, A., Menne, F., Ellrich, J., &Eichhammer, P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain stimulation, 6(2), 202-209. [PubMed]
  • Machhada, A., Trapp, S., Marina, N., Stephens, R. C., Whittle, J., Lythgoe, M. F., & Gourine, A. V. (2017). Vagal determinants of exercise capacity. Nature communications, 8(1), 15097. [PubMed]
  • Deuchars, S. A., Lall, V. K., Clancy, J., Mahadi, M., Murray, A., Peers, L., & Deuchars, J. (2018). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Experimental Physiology, 103(3), 326-331. [PubMed]
  • Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2007). Parasympathetic reactivation after repeated sprint exercise. American journal of physiology-heart and circulatory physiology, 293(1), H133-H141. [PubMed]
  • Stanley, J., Peake, J. M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports medicine, 43, 1259-1277. [PubMed]
  • Chalencon, S., Busso, T., Lacour, J. R., Garet, M., Pichot, V., Connes, P., & Barthélémy, J. C. (2012). A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PloS one, 7(12), e52636. [PubMed]
  • Wang, A., Yang, L., Wen, W., Zhang, S., Hao, D., Khalid, S. G., & Zheng, D. (2018). Quantification of radial arterial pulse characteristics change during exercise and recovery. The journal of physiological sciences, 68, 113-120. [PubMed]
  • Parhizgar, F., Nugent, K., & Raj, R. (2011). Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. Journal of Clinical Sleep Medicine, 7(4), 401-407. [PubMed]
  • Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., & Bernardi, L. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. hypertension, 46(4), 714-718. [PubMed]
  • Breskovic, T., Valic, Z., Lipp, A., Heusser, K., Ivancev, V., Tank, J., & Dujic, Z. (2010). Peripheral chemoreflex regulation of sympathetic vasomotor tone in apnea divers. Clinical Autonomic Research, 20, 57-63. [PubMed]
  • Feng, C. H., Miller, M. D., & Simon, R. A. (2012). The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis. American journal of rhinology & allergy, 26(3), 187-190. [PubMed]
  • Mancia, G., And Grassi, G. (2014). The autonomic nervous system& hypertension. Circulation research, 114(11), 1804-1814. [PubMed]
  • Pal, G. K., Pal, P., Lalitha, V., Dutta, T. K., Adithan, C., & Nanda, N. (2013). Sympathovagal imbalance in young prehypertensives: importance of male-female difference. The American Journal of the Medical Sciences, 345(1), 10-17. [PubMed]
  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 258. [PubMed]
  • Nunan, D., Sandercock, G. R., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short‐term heart rate variability in healthy adults. Pacing and clinical electrophysiology, 33(11), 1407-1417. [PubMed]
  • Buchholz, B., Donato, M., Perez, V., Deutsch, A. C. R., Höcht, C., Del Mauro, J. S., & Gelpi, R. J. (2015). Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic parasympathetic interactions. Pflügers Archiv-European Journal of Physiology, 467, 1509-1522. [PubMed]
  • Behr, J., & Furst, D. E. (2008). Pulmonary function tests. Rheumatology, 47(5), v65-v67. [PubMed]
  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), 210-220. [PubMed] Hatik, S. H., Arslan, M., Demirbilek, Ö., & Özden, A. V. (2023). The effect of transcutaneous auricular vagus nerve stimulation on cycling ergometry and recovery in healthy young individuals. Brain and Behavior, 13(12), e3332. [PubMed]
  • Darrow, M. J., Mian, T. M., Torres, M., Haider, Z., Danaphongse, T., Seyedahmadi, A., &Kilgard, M. P. (2021). The tactile experience paired with vagus nerve stimulation determines the degree of sensory recovery after chronic nerve damage. Behavioural brain research, 396, 112910. [PubMed]
  • Shanks, J., Pachen, M., Chang, J. W., George, B., & Ramchandra, R. (2023). Cardiac vagal nerve activity increases during exercise to enhance coronary blood flow. Circulation research, 133(7), 559-571. [PubMed]
  • Çalι, A., Özden, A. V., & Ceylan, İ. (2023). Effects of a single session of noninvasive auricular vagus nerve stimulation on sports performance in elite athletes: an open-label randomized controlled trial. Expert Review of Medical Devices, 1-7. [PubMed]
  • Hatik, S., Pehlivanoglu, B., Arslan, M., Taskin, C., &Özden, A. (2022). Acute effect of auricular vagus nerve stimulation on cycle ergometer test and physiological parameters in healthy young individuals: a pilot study. Int. J. Sports Exerc. Med, 8(211), 10-23937. [CrossRef]
Year 2024, , 494 - 501, 25.05.2024
https://doi.org/10.33438/ijdshs.1406505

Abstract

References

  • Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental physiology, 95(3), 431-440. [PubMed]
  • Chen, J. L., Yeh, D. P., Lee, J. P., Chen, C. Y., Huang, C. Y., Lee, S. D., & Kuo, C. H. (2011). Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. The Journal of Strength & Conditioning Research, 25(6), 1546-1552. [PubMed]
  • Boullosa, D. A., Tuimil, J. L., Leicht, A. S., & Crespo-Salgado, J. J. (2009). Parasympathetic modulation and running performance in distance runners. The Journal of Strength & Conditioning Research, 23(2), 626-631. [PubMed] Mulders, D. M., de Vos, C. C., Vosman, I., & van Putten, M. J. (2015). The effect of vagus nerve stimulation on cardiorespiratory parameters during rest and exercise. Seizure, 33, 24-28. [PubMed]
  • Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain stimulation, 7(6), 871-877. [PubMed]
  • Antonino, D., Teixeira, A. L., Maia-Lopes, P. M., Souza, M. C., Sabino-Carvalho, J. L., Murray, A. R., &Vianna, L. C. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain stimulation, 10(5), 875-881. [PubMed]
  • Gifford, R. M., Boos, C. J., Reynolds, R. M., & Woods, D. R. (2018). Recovery time and heart rate variability following extreme endurance exercise in healthy women. Physiological reports, 6(21), e13905. [PubMed]
  • Michael, S., Jay, O., Graham, K. S., & Davis, G. M. (2017). Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Applied Physiology, Nutrition, and Metabolism, 42(8), 834-840. [PubMed]
  • Michael, S., Jay, O., Graham, K. S., & Davis, G. M. (2018). Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. Journal of science and medicine in sport, 21(10), 1079-1084. [PubMed]
  • Ebersole, K. T., Cornell, D. J., Flees, R. J., Shemelya, C. M., & Noel, S. E. (2020). Contribution of the autonomic nervous system to recovery in firefighters. Journal of athletic training, 55(9), 1001-1008. [PubMed]
  • Özden, A. V. (2023). Vagus nerve stimulation in peripheral targets. In Vagus Nerve Stimulation (pp. 1-29). New York, NY: Springer US.
  • Yuan, H., & Silberstein, S. D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache: The Journal of Head and Face Pain, 56(1), 71-78. [PubMed]
  • Busch, V., Zeman, F., Heckel, A., Menne, F., Ellrich, J., &Eichhammer, P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain stimulation, 6(2), 202-209. [PubMed]
  • Machhada, A., Trapp, S., Marina, N., Stephens, R. C., Whittle, J., Lythgoe, M. F., & Gourine, A. V. (2017). Vagal determinants of exercise capacity. Nature communications, 8(1), 15097. [PubMed]
  • Deuchars, S. A., Lall, V. K., Clancy, J., Mahadi, M., Murray, A., Peers, L., & Deuchars, J. (2018). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Experimental Physiology, 103(3), 326-331. [PubMed]
  • Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2007). Parasympathetic reactivation after repeated sprint exercise. American journal of physiology-heart and circulatory physiology, 293(1), H133-H141. [PubMed]
  • Stanley, J., Peake, J. M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports medicine, 43, 1259-1277. [PubMed]
  • Chalencon, S., Busso, T., Lacour, J. R., Garet, M., Pichot, V., Connes, P., & Barthélémy, J. C. (2012). A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PloS one, 7(12), e52636. [PubMed]
  • Wang, A., Yang, L., Wen, W., Zhang, S., Hao, D., Khalid, S. G., & Zheng, D. (2018). Quantification of radial arterial pulse characteristics change during exercise and recovery. The journal of physiological sciences, 68, 113-120. [PubMed]
  • Parhizgar, F., Nugent, K., & Raj, R. (2011). Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. Journal of Clinical Sleep Medicine, 7(4), 401-407. [PubMed]
  • Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., & Bernardi, L. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. hypertension, 46(4), 714-718. [PubMed]
  • Breskovic, T., Valic, Z., Lipp, A., Heusser, K., Ivancev, V., Tank, J., & Dujic, Z. (2010). Peripheral chemoreflex regulation of sympathetic vasomotor tone in apnea divers. Clinical Autonomic Research, 20, 57-63. [PubMed]
  • Feng, C. H., Miller, M. D., & Simon, R. A. (2012). The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis. American journal of rhinology & allergy, 26(3), 187-190. [PubMed]
  • Mancia, G., And Grassi, G. (2014). The autonomic nervous system& hypertension. Circulation research, 114(11), 1804-1814. [PubMed]
  • Pal, G. K., Pal, P., Lalitha, V., Dutta, T. K., Adithan, C., & Nanda, N. (2013). Sympathovagal imbalance in young prehypertensives: importance of male-female difference. The American Journal of the Medical Sciences, 345(1), 10-17. [PubMed]
  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 258. [PubMed]
  • Nunan, D., Sandercock, G. R., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short‐term heart rate variability in healthy adults. Pacing and clinical electrophysiology, 33(11), 1407-1417. [PubMed]
  • Buchholz, B., Donato, M., Perez, V., Deutsch, A. C. R., Höcht, C., Del Mauro, J. S., & Gelpi, R. J. (2015). Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic parasympathetic interactions. Pflügers Archiv-European Journal of Physiology, 467, 1509-1522. [PubMed]
  • Behr, J., & Furst, D. E. (2008). Pulmonary function tests. Rheumatology, 47(5), v65-v67. [PubMed]
  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), 210-220. [PubMed] Hatik, S. H., Arslan, M., Demirbilek, Ö., & Özden, A. V. (2023). The effect of transcutaneous auricular vagus nerve stimulation on cycling ergometry and recovery in healthy young individuals. Brain and Behavior, 13(12), e3332. [PubMed]
  • Darrow, M. J., Mian, T. M., Torres, M., Haider, Z., Danaphongse, T., Seyedahmadi, A., &Kilgard, M. P. (2021). The tactile experience paired with vagus nerve stimulation determines the degree of sensory recovery after chronic nerve damage. Behavioural brain research, 396, 112910. [PubMed]
  • Shanks, J., Pachen, M., Chang, J. W., George, B., & Ramchandra, R. (2023). Cardiac vagal nerve activity increases during exercise to enhance coronary blood flow. Circulation research, 133(7), 559-571. [PubMed]
  • Çalι, A., Özden, A. V., & Ceylan, İ. (2023). Effects of a single session of noninvasive auricular vagus nerve stimulation on sports performance in elite athletes: an open-label randomized controlled trial. Expert Review of Medical Devices, 1-7. [PubMed]
  • Hatik, S., Pehlivanoglu, B., Arslan, M., Taskin, C., &Özden, A. (2022). Acute effect of auricular vagus nerve stimulation on cycle ergometer test and physiological parameters in healthy young individuals: a pilot study. Int. J. Sports Exerc. Med, 8(211), 10-23937. [CrossRef]
There are 33 citations in total.

Details

Primary Language English
Subjects Physical Training and Sports
Journal Section Original Article
Authors

Ezgi Övünç Güçlüer 0000-0003-3981-0214

İbrahim Halil Ural 0000-0001-5960-0199

Ali Veysel Özden 0000-0003-2349-996X

Hasan Kerem Alptekin 0000-0003-2429-5651

Sefa Haktan Hatık 0000-0003-0517-4600

Early Pub Date May 20, 2024
Publication Date May 25, 2024
Submission Date December 22, 2023
Acceptance Date May 2, 2024
Published in Issue Year 2024

Cite

APA Güçlüer, E. Ö., Ural, İ. H., Özden, A. V., Alptekin, H. K., et al. (2024). Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise. International Journal of Disabilities Sports and Health Sciences, 7(3), 494-501. https://doi.org/10.33438/ijdshs.1406505
AMA Güçlüer EÖ, Ural İH, Özden AV, Alptekin HK, Hatık SH. Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise. International Journal of Disabilities Sports and Health Sciences. May 2024;7(3):494-501. doi:10.33438/ijdshs.1406505
Chicago Güçlüer, Ezgi Övünç, İbrahim Halil Ural, Ali Veysel Özden, Hasan Kerem Alptekin, and Sefa Haktan Hatık. “Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise”. International Journal of Disabilities Sports and Health Sciences 7, no. 3 (May 2024): 494-501. https://doi.org/10.33438/ijdshs.1406505.
EndNote Güçlüer EÖ, Ural İH, Özden AV, Alptekin HK, Hatık SH (May 1, 2024) Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise. International Journal of Disabilities Sports and Health Sciences 7 3 494–501.
IEEE E. Ö. Güçlüer, İ. H. Ural, A. V. Özden, H. K. Alptekin, and S. H. Hatık, “Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise”, International Journal of Disabilities Sports and Health Sciences, vol. 7, no. 3, pp. 494–501, 2024, doi: 10.33438/ijdshs.1406505.
ISNAD Güçlüer, Ezgi Övünç et al. “Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise”. International Journal of Disabilities Sports and Health Sciences 7/3 (May 2024), 494-501. https://doi.org/10.33438/ijdshs.1406505.
JAMA Güçlüer EÖ, Ural İH, Özden AV, Alptekin HK, Hatık SH. Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise. International Journal of Disabilities Sports and Health Sciences. 2024;7:494–501.
MLA Güçlüer, Ezgi Övünç et al. “Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise”. International Journal of Disabilities Sports and Health Sciences, vol. 7, no. 3, 2024, pp. 494-01, doi:10.33438/ijdshs.1406505.
Vancouver Güçlüer EÖ, Ural İH, Özden AV, Alptekin HK, Hatık SH. Effects of Auricular Vagus Nerve Stimulation on Cardio-Respiratory Functions After Aerobic Exercise. International Journal of Disabilities Sports and Health Sciences. 2024;7(3):494-501.


Flag Counter