BibTex RIS Cite
Year 2016, , 1 - 6, 03.06.2016
https://doi.org/10.24107/ijeas.251263

Abstract

References

  • [1] Shin, E., Park, C., Cho, H., Theoretical analysis of performance of a two-stage compression CO2 cycle with two different evaporating temperatures. International journal of refrigeration, 47, 164- 175, 2014.
  • [2] Ahammed, E., Bhattacharyya, S., Ramgopal, M., Thermodynamic design and simulation of a CO2 based transcritical vapour compression refrigeration system with an ejector. International journal of refrigeration, 45, 177-188, 2014.
  • [3] Pérez-García, V., Belman-Flores, J.M., Navarro-Esbrí, J., Rubio-Maya, C., Comparative study of transcritical vapor compression configurations using CO2 as refrigeration mode base on simulation. Applied Thermal Engineering, 51, 1038-1046, 2013.
  • [4] Chesi, A., Esposito, F., Ferrara, G., Ferrari, L., Experimental analysis of R744 parallel compression cycle. Applied Energy, 135, 274–285, 2014.
  • [5] Ge, Y.T., Tassou, S.A., Santosa, I.D., Tsamos, K., Design Optimisation of CO2 Gas cooler/Condenser in a Refrigeration System. Energy Procedia, 61, 2311 – 2314, 2014.
  • [6] Salazar, M., Méndez, F., PID control for a single-stage transcritical CO2 refrigeration cycle. Applied Thermal Engineering, 67, 429-438, 2014.
  • [7] Selbas, R., Sencan, A., Kılıc, B., Alternative approach in thermal analysis of plate heat exchanger. Heat Mass Transfer, 45, 323–329, 2009.
  • [8] Dincer, K., Tasdemir, S., Baskaya, S., Ucgul, İ., Uysal, B.Z., Fuzzy Modeling of Performance of Counterflow Ranque-Hilsch Vortex Tubes with Different Geometric Constructions. Numerical Heat Transfer Part B: Fundamentals, 49, 51- 54, 2008.

Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles

Year 2016, , 1 - 6, 03.06.2016
https://doi.org/10.24107/ijeas.251263

Abstract

In this paper, an application artificial neural network (ANN) is presented to estimation the coefficient of performance (COP) in the transcritical CO2 one-stage vapor compression cycles. The thermodynamic properties of the transcritical CO2 one-stage vapor compression cycles were obtained from CoolPack program. The obtained data were used for training and testing artificial neural network. The results of the ANN are compared with the actual data. The coefficient of multiple determination (R2) value was obtained as 0.99907 for the coefficient of performance (COP), which is very satisfactory. A new formulation was derived for the determination of the coefficient of performance (COP) in the transcritical CO2 one-stage vapor compression cycles

References

  • [1] Shin, E., Park, C., Cho, H., Theoretical analysis of performance of a two-stage compression CO2 cycle with two different evaporating temperatures. International journal of refrigeration, 47, 164- 175, 2014.
  • [2] Ahammed, E., Bhattacharyya, S., Ramgopal, M., Thermodynamic design and simulation of a CO2 based transcritical vapour compression refrigeration system with an ejector. International journal of refrigeration, 45, 177-188, 2014.
  • [3] Pérez-García, V., Belman-Flores, J.M., Navarro-Esbrí, J., Rubio-Maya, C., Comparative study of transcritical vapor compression configurations using CO2 as refrigeration mode base on simulation. Applied Thermal Engineering, 51, 1038-1046, 2013.
  • [4] Chesi, A., Esposito, F., Ferrara, G., Ferrari, L., Experimental analysis of R744 parallel compression cycle. Applied Energy, 135, 274–285, 2014.
  • [5] Ge, Y.T., Tassou, S.A., Santosa, I.D., Tsamos, K., Design Optimisation of CO2 Gas cooler/Condenser in a Refrigeration System. Energy Procedia, 61, 2311 – 2314, 2014.
  • [6] Salazar, M., Méndez, F., PID control for a single-stage transcritical CO2 refrigeration cycle. Applied Thermal Engineering, 67, 429-438, 2014.
  • [7] Selbas, R., Sencan, A., Kılıc, B., Alternative approach in thermal analysis of plate heat exchanger. Heat Mass Transfer, 45, 323–329, 2009.
  • [8] Dincer, K., Tasdemir, S., Baskaya, S., Ucgul, İ., Uysal, B.Z., Fuzzy Modeling of Performance of Counterflow Ranque-Hilsch Vortex Tubes with Different Geometric Constructions. Numerical Heat Transfer Part B: Fundamentals, 49, 51- 54, 2008.
There are 8 citations in total.

Details

Subjects Engineering
Other ID JA66EV49EN
Journal Section Articles
Authors

Bayram Kılıç This is me

Publication Date June 3, 2016
Published in Issue Year 2016

Cite

APA Kılıç, B. (2016). Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles. International Journal of Engineering and Applied Sciences, 8(1), 1-6. https://doi.org/10.24107/ijeas.251263
AMA Kılıç B. Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles. IJEAS. March 2016;8(1):1-6. doi:10.24107/ijeas.251263
Chicago Kılıç, Bayram. “Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles”. International Journal of Engineering and Applied Sciences 8, no. 1 (March 2016): 1-6. https://doi.org/10.24107/ijeas.251263.
EndNote Kılıç B (March 1, 2016) Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles. International Journal of Engineering and Applied Sciences 8 1 1–6.
IEEE B. Kılıç, “Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles”, IJEAS, vol. 8, no. 1, pp. 1–6, 2016, doi: 10.24107/ijeas.251263.
ISNAD Kılıç, Bayram. “Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles”. International Journal of Engineering and Applied Sciences 8/1 (March 2016), 1-6. https://doi.org/10.24107/ijeas.251263.
JAMA Kılıç B. Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles. IJEAS. 2016;8:1–6.
MLA Kılıç, Bayram. “Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles”. International Journal of Engineering and Applied Sciences, vol. 8, no. 1, 2016, pp. 1-6, doi:10.24107/ijeas.251263.
Vancouver Kılıç B. Alternative Approach For Thermal Analysis Of Transcritical Co2 One-Stage Vapor Compression Cycles. IJEAS. 2016;8(1):1-6.

21357download