Optimum Design of Steel Space Frames: Tabu Search vs. Simulated Annealing and Genetic Algorithms
Year 2009,
Volume: 1 Issue: 2, 34 - 45, 01.06.2009
S.o. Degertekin
M.s. Hayalioglu
Abstract
In this paper, an algorithm is presented for the optimum design of geometrically non-linear steel space frames using tabu search. The design algorithm obtains minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Strength constraints of American Institute of Steel Construction—Load and Resistance Factor Design (AISCLRFD) specification, maximum drift (lateral displacement), interstorey drift and size constraints for columns were imposed on frames. The performance of the tabu search was compared with simulated annealing and genetic algorithms for two steel space frames taken from the literature. The comparisons showed that the tabu search algorithm resulted in lighter frames
References
- 1] Jenkins, W.M., Towards structural optimization via the genetic algorithm. Comput. Struct., 40, 1321-1327, 1991.
- [2] Jenkins, W.M., Plane frame optimum design environment based on genetic algorithm. J. Struct. Eng.- ASCE, 118, 3103-3112, 1992.
- [3] Rajeev, S. and Krishnamoorthy, C.S. Discrete optimization of structures using genetic algorithms. J. Struct. Eng.- ASCE, 118, 1233-1250, 1992.
- [4] Camp, C., Pezeshk, S. and Cao, G., Optimized design of two-dimensional structures using a genetic algorithm. J. Struct. Eng.- ASCE, 124, 551-559, 1998.
- [5] Pezeshk, S., Camp, C.V. and Chen, D., Design of nonlinear framed structures using genetic optimization. J. Struct. Eng.- ASCE, 126, 382-388, 2000.
- [6] Hayalioglu, M.S., Optimum load and resistance factor design of steel space frames using genetic algorithm. Struct. Multidiscip. O., 21, 292-299, 2001.
- [7] Kaveh, A. and Kalatraji, V., Genetic algorithm for discrete-sizing optimal design of trusses using the force method. Int. J. Numer. Meth. Eng., 55, 55-72, 2002.
- [8] Kaveh, A. and Kalatraji, V., Size/geometry optimization of trusses by the force method and genetic algorithm. Z. Angew. Math. Mech., 84, 347-357, 2004.
- [9] Kaveh, A. and Rahami, H., Nonlinear analysis and optimal design of structures via force method and genetic algorithm. Comput. Struct., 84, 770-778, 2006.
- [10] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by simulated annealing. Science, 220, 671-680, 1983.
- [11] Bennage, W.A. and Dhingra, A.K., Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing. Int. J. Numer. Meth. Eng. 38, 2753-2773, 1995.
- [12] Dhingra, A.K. and Bennage, W.A., Topological optimization truss structures using simulated annealing. Eng. Optimiz., 24, 239-259, 1995.
- [13] Pantelidis, C.P. and Tzan, S.R., Modified iterated annealing algorithm for structural synthesis. Adv. Eng. Softw., 31, 391-400, 2000.
- [14] Chen, T.Y. and Su, J.J., Efficiency improvement of simulated annealing in optimal structural designs. Adv. Eng. Softw., 33, 675-680, 2002.
- [15] Hasancebi, O. and Erbatur, F., Layout optimisation of trusses using simulated annealing. Adv. Eng. Softw., 33, 681-696, 2002.
- [16] Huang, M.W. and Arora, J.S., Optimal design steel structures using standard sections. Struct. Optim., 14, 24-35, 1997.
- [17] Park, H.S. and Sung, C.W., Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Comput. Struct., 80, 1305-1316, 2002.
- [18] American Institute of Steel Construction. Manual of steel construction: allowable stress design, Chicago, Illionis, 1989.
- [19] Balling, R.J., Optimal steel frame design by simulated annealing. J. Struct. Eng.-ASCE, 117, 1780-1795, 1991
- [20] Degertekin, S.O., A comparison of simulated annealing and genetic algorithm for optimum design of non-linear steel space frames. Struct. Multidiscip. O., 34, 347-359, 2007.
- [21] American Institute of Steel Construction. Manual of steel construction: load and resistance factor design, Chicago, Illionis, 1995.
- [22] Glover, F., Heuristics for integer programming using surrogate constraints, Dec. Sci., 8, 156-166, 1977.
- [23] Glover, F., Tabu search-Part I, ORSA. J. Comp. 1, 190-206, 1989.
- [24] Glover, F., Tabu search-Part II, ORSA J. Comp., 2, 4-32, 1990.
- [25] Glover, F. and Laguna, M., Tabu search, Modern heuristic techniques combinatorial problems, Osney Mead, Oxford, 1992.
- [26] Glover, F. and Laguna, M., Tabu search, Kluwer Academic Publishers, 1997.
- [27] Kargahi, M., Anderson, J.C. and Dessouky, M.M., Structural weight optimization of frames using tabu search. I: Optimization procedure, J. Struct. Eng.- ASCE, 132, 1858- 1868, 2006.
- [28] Kargahi, M. and Anderson, J.C., Structural weight optimization of frames using tabu search. II: Evaluation and seismic performance, J. Struct. Eng.- ASCE, 132, 1869-1879, 2006.
- [29] Degertekin, S.O., Hayalioglu, M.S. and Ulker, M., Tabu Search Based Optimum Design of Geometrically Non-Linear Steel Space Frames, Struct. Eng. Mech., 27, 575-588, 2007.
- [30] Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S., Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm, Eng. Struct., 30, 197-205, 2008.
- [31] Dumonteil, P., Simple equations for effective length factors. Eng. J. AISC, 29, 111-115, 1992.
- [32] Levy, R. and Spillers, W.R., Analysis of geometrically nonlinear structures, Chapman and Hall, New York, 1994.
- [33] Uniform Building Code. International Conference of Building Officials, Whittier, California, 1997.
Year 2009,
Volume: 1 Issue: 2, 34 - 45, 01.06.2009
S.o. Degertekin
M.s. Hayalioglu
References
- 1] Jenkins, W.M., Towards structural optimization via the genetic algorithm. Comput. Struct., 40, 1321-1327, 1991.
- [2] Jenkins, W.M., Plane frame optimum design environment based on genetic algorithm. J. Struct. Eng.- ASCE, 118, 3103-3112, 1992.
- [3] Rajeev, S. and Krishnamoorthy, C.S. Discrete optimization of structures using genetic algorithms. J. Struct. Eng.- ASCE, 118, 1233-1250, 1992.
- [4] Camp, C., Pezeshk, S. and Cao, G., Optimized design of two-dimensional structures using a genetic algorithm. J. Struct. Eng.- ASCE, 124, 551-559, 1998.
- [5] Pezeshk, S., Camp, C.V. and Chen, D., Design of nonlinear framed structures using genetic optimization. J. Struct. Eng.- ASCE, 126, 382-388, 2000.
- [6] Hayalioglu, M.S., Optimum load and resistance factor design of steel space frames using genetic algorithm. Struct. Multidiscip. O., 21, 292-299, 2001.
- [7] Kaveh, A. and Kalatraji, V., Genetic algorithm for discrete-sizing optimal design of trusses using the force method. Int. J. Numer. Meth. Eng., 55, 55-72, 2002.
- [8] Kaveh, A. and Kalatraji, V., Size/geometry optimization of trusses by the force method and genetic algorithm. Z. Angew. Math. Mech., 84, 347-357, 2004.
- [9] Kaveh, A. and Rahami, H., Nonlinear analysis and optimal design of structures via force method and genetic algorithm. Comput. Struct., 84, 770-778, 2006.
- [10] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by simulated annealing. Science, 220, 671-680, 1983.
- [11] Bennage, W.A. and Dhingra, A.K., Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing. Int. J. Numer. Meth. Eng. 38, 2753-2773, 1995.
- [12] Dhingra, A.K. and Bennage, W.A., Topological optimization truss structures using simulated annealing. Eng. Optimiz., 24, 239-259, 1995.
- [13] Pantelidis, C.P. and Tzan, S.R., Modified iterated annealing algorithm for structural synthesis. Adv. Eng. Softw., 31, 391-400, 2000.
- [14] Chen, T.Y. and Su, J.J., Efficiency improvement of simulated annealing in optimal structural designs. Adv. Eng. Softw., 33, 675-680, 2002.
- [15] Hasancebi, O. and Erbatur, F., Layout optimisation of trusses using simulated annealing. Adv. Eng. Softw., 33, 681-696, 2002.
- [16] Huang, M.W. and Arora, J.S., Optimal design steel structures using standard sections. Struct. Optim., 14, 24-35, 1997.
- [17] Park, H.S. and Sung, C.W., Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Comput. Struct., 80, 1305-1316, 2002.
- [18] American Institute of Steel Construction. Manual of steel construction: allowable stress design, Chicago, Illionis, 1989.
- [19] Balling, R.J., Optimal steel frame design by simulated annealing. J. Struct. Eng.-ASCE, 117, 1780-1795, 1991
- [20] Degertekin, S.O., A comparison of simulated annealing and genetic algorithm for optimum design of non-linear steel space frames. Struct. Multidiscip. O., 34, 347-359, 2007.
- [21] American Institute of Steel Construction. Manual of steel construction: load and resistance factor design, Chicago, Illionis, 1995.
- [22] Glover, F., Heuristics for integer programming using surrogate constraints, Dec. Sci., 8, 156-166, 1977.
- [23] Glover, F., Tabu search-Part I, ORSA. J. Comp. 1, 190-206, 1989.
- [24] Glover, F., Tabu search-Part II, ORSA J. Comp., 2, 4-32, 1990.
- [25] Glover, F. and Laguna, M., Tabu search, Modern heuristic techniques combinatorial problems, Osney Mead, Oxford, 1992.
- [26] Glover, F. and Laguna, M., Tabu search, Kluwer Academic Publishers, 1997.
- [27] Kargahi, M., Anderson, J.C. and Dessouky, M.M., Structural weight optimization of frames using tabu search. I: Optimization procedure, J. Struct. Eng.- ASCE, 132, 1858- 1868, 2006.
- [28] Kargahi, M. and Anderson, J.C., Structural weight optimization of frames using tabu search. II: Evaluation and seismic performance, J. Struct. Eng.- ASCE, 132, 1869-1879, 2006.
- [29] Degertekin, S.O., Hayalioglu, M.S. and Ulker, M., Tabu Search Based Optimum Design of Geometrically Non-Linear Steel Space Frames, Struct. Eng. Mech., 27, 575-588, 2007.
- [30] Degertekin, S.O., Saka, M.P. and Hayalioglu, M.S., Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm, Eng. Struct., 30, 197-205, 2008.
- [31] Dumonteil, P., Simple equations for effective length factors. Eng. J. AISC, 29, 111-115, 1992.
- [32] Levy, R. and Spillers, W.R., Analysis of geometrically nonlinear structures, Chapman and Hall, New York, 1994.
- [33] Uniform Building Code. International Conference of Building Officials, Whittier, California, 1997.