Bu çalışmada SST turbulans modeli kullanılarak çoklu kanat kesitleri kullanılarak rüzgar türbininin aerodinamik verimliliği nümerik olarak araştırılmıştır. bu çalışmada NREL tarafından geliştiren S tipi kanat kesitleri kullanılmıştır. Çalışmanın tutarlılığını belirlemek için öncelikle S825 kanat kesitleri nümerik analiz edilerek deneysel verilerle kıyaslanmış daha sonra çalışma için seçilen S814, S825 ve S826 kesitleri kullanılarak kaldırma, sürüklenme ve basınç katsayıları hesaplanış ve yorumlanmıştır.
Zhang, X., Li, W., Liu, H., “Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification,” Renewable Energy Vol. 80, 2015, pp. 489-497
Sogukpinar, H., Bozkurt, I., Pala, M., Turkmenler, H., “Aerodynamic Numerical Testing of Megawatt Wind Turbine Blade to Find Optimum Angle of Attack,” International Journal of Engineering & Applied Sciences (IJEAS), Vol. 7, 2015, pp. 1-9.
Sogukpinar, H., Bozkurt, I., “Calculation of Aerodynamic Performance Characteristics of Airplane Wing and Comparing with the Experimental Measurement,” International Journal Of Engineering Technologies, Vol. 1, 2015, pp. 83-87.
Sogukpinar, H., Bozkurt, I., “Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil,” Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 2, 2015, pp. 1103-1108.
Yoo, H.S., Lee, J.C., “Numerical Analysis of NACA64-418 Airfoil with Blunt Trailing Edge,” Int’l J. of Aeronautical & Space Sci., Vol. 16(4), 2015, pp. 493–499.
Thumthae, C., Chitsomboon, T., “Optimal angle of attack for untwisted blade wind turbine,” Renewable Energy, Vol. 34, 2009, pp. 1279–1284.
Sayed, M.A., Kandil, H.A., Shaltot, A., “Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method,” Energy Conversion and Management Vol. 64, 2012, pp. 541–550.
Lanzafame, R., Messina, M., “Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory,” Renewable Energy Vol. 32, 2007, pp. 2291–2305.
National Renewable Energy Laboratory, http://wind.nrel.gov. 2015
Year 2017,
Volume: 9 Issue: 3, 75 - 86, 27.10.2017
Zhang, X., Li, W., Liu, H., “Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification,” Renewable Energy Vol. 80, 2015, pp. 489-497
Sogukpinar, H., Bozkurt, I., Pala, M., Turkmenler, H., “Aerodynamic Numerical Testing of Megawatt Wind Turbine Blade to Find Optimum Angle of Attack,” International Journal of Engineering & Applied Sciences (IJEAS), Vol. 7, 2015, pp. 1-9.
Sogukpinar, H., Bozkurt, I., “Calculation of Aerodynamic Performance Characteristics of Airplane Wing and Comparing with the Experimental Measurement,” International Journal Of Engineering Technologies, Vol. 1, 2015, pp. 83-87.
Sogukpinar, H., Bozkurt, I., “Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil,” Journal of Multidisciplinary Engineering Science and Technology (JMEST), Vol. 2, 2015, pp. 1103-1108.
Yoo, H.S., Lee, J.C., “Numerical Analysis of NACA64-418 Airfoil with Blunt Trailing Edge,” Int’l J. of Aeronautical & Space Sci., Vol. 16(4), 2015, pp. 493–499.
Thumthae, C., Chitsomboon, T., “Optimal angle of attack for untwisted blade wind turbine,” Renewable Energy, Vol. 34, 2009, pp. 1279–1284.
Sayed, M.A., Kandil, H.A., Shaltot, A., “Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method,” Energy Conversion and Management Vol. 64, 2012, pp. 541–550.
Lanzafame, R., Messina, M., “Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory,” Renewable Energy Vol. 32, 2007, pp. 2291–2305.
National Renewable Energy Laboratory, http://wind.nrel.gov. 2015
Sogukpinar, H. (2017). Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine. International Journal of Engineering and Applied Sciences, 9(3), 75-86. https://doi.org/10.24107/ijeas.332075
AMA
Sogukpinar H. Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine. IJEAS. October 2017;9(3):75-86. doi:10.24107/ijeas.332075
Chicago
Sogukpinar, Haci. “Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine”. International Journal of Engineering and Applied Sciences 9, no. 3 (October 2017): 75-86. https://doi.org/10.24107/ijeas.332075.
EndNote
Sogukpinar H (October 1, 2017) Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine. International Journal of Engineering and Applied Sciences 9 3 75–86.
IEEE
H. Sogukpinar, “Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine”, IJEAS, vol. 9, no. 3, pp. 75–86, 2017, doi: 10.24107/ijeas.332075.
ISNAD
Sogukpinar, Haci. “Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine”. International Journal of Engineering and Applied Sciences 9/3 (October 2017), 75-86. https://doi.org/10.24107/ijeas.332075.
JAMA
Sogukpinar H. Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine. IJEAS. 2017;9:75–86.
MLA
Sogukpinar, Haci. “Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine”. International Journal of Engineering and Applied Sciences, vol. 9, no. 3, 2017, pp. 75-86, doi:10.24107/ijeas.332075.
Vancouver
Sogukpinar H. Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine. IJEAS. 2017;9(3):75-86.