Research Article
BibTex RIS Cite
Year 2020, Volume: 12 Issue: 4, 138 - 152, 29.12.2020
https://doi.org/10.24107/ijeas.816227

Abstract

References

  • Uzun, B. and Civalek, O., Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials, Mathematical and Computational Applications, 24, 38, 2019.
  • Jalaei, M. and Civalek, Ӧ., On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, International Journal of Engineering Science, 143, 14-32, 2019.
  • Civalek, O., Uzun, B., Yaylı, M.O. and Akgöz, B., Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method, European Physical Journal Plus, 135, 381, 2020.
  • Civalek, Ö. and Demir, C., A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Applied Mathematics and Computation, 289, 335-352, 2016.
  • Gurses, M., Akgoz, B. and Civalek, O., Mathematical modeling of vibration problem of nanosized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation, Applied Mathematics and Computation, 219, 3226- 3240, 2012.
  • Yaylaci, M. and Avcar, M., Finite element modeling of contact between an elastic layer and two elastic quarter planes, Computers and Concrete, 26(2), 107-114, 2020.
  • Yaylaci, M., Terzi, C. and Avcar, M., Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane, Structural Engineering and Mechanics, 72(6), 775-783, 2019.
  • Yaylacı, M., Bayrak, M.Ç. and Avcar, M., Finite element modeling of receding contact problem, International Journal of Engineering and Applied Sciences, 11(4) 468-475, 2019.
  • Chen, J., Ahmad, R., Suenaga, H., Li W., Swain, M. and Li Q., A comparative study on complete and implant retained denture treatments – A biomechanics perspective, Journal of Biomechanics, 48(3), 512-519, 2015. https://doi.org/10.1016/j.jbiomech.2014.11.043.
  • Van Osterwyck, H., Duyck, J., Vander, S., Vander, P.G., Decoomans, M., Lieven, S., Puers, R. and Naert, L., The influence of bone mechanical properties and implant fixation upon bone loading around oral implants, Clin Oral Implants Res, 9(6), 407-412, 1998. https://doi.org/10.1034/j.1600-0501.1996.090606.x
  • Geng, J.P., Tan, K.B. and Liu, G.R., Application of finite element analysis in implant dentistry: a review of the literature, Journal of Prosthetic Dentistry, 85(6), 585-98, 2001. https://doi.org/ 10.1067/mpr.2001.115251.
  • Kunavisarut, C., Lisa, A.. Lang, L.A., Stoner, B.R. and Felton, D.A., Finite element analysis on dental implant- supported prostheses without passive fit, Journal of Prosthodontics, 11(1), 30-40, 2002. https://doi.org/ 10.1111/j.1532-849x.2002.00030.x.
  • Ding, X., Zhu, X.H., Liao, S.H., Zhang, X.H. and Chen, H., Implant–Bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis, Journal of Prosthodontics, 18, 393–402, 2009. https://doi.org/ 10.1111/j.1532-849X.2009.00453.x.
  • Hsu, M.L. and Chang, C.L., Application of finite element analysis in dentistry, Finite Element Analysis, 5, 43-6, 2010.
  • Kumar, G.A., Kovoor, L.C. and Oommen, V.M., Three-dimensional finite element analysis of the stress distribution around the implant and tooth in tooth implant- supported fixed prosthesis designs, Journal of Dental Implants, 1(2), 75-79, 2011.
  • El-Anwar, M.I. and El-Zawahry, M.M., A three-dimensional finite element study on dental implant design, Journal of Genetic Engineering and Biotechnology, 9(1), 77-82, 2011. https://doi.org/10.1016/j.jgeb.2011.05.007.
  • Baggi, L., Pastore, S., Girolamo, M.D. and Vairo, G., Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: A three-dimensional finite element approach, The Journal of Prosthetic Dentistry, 109(1), 9-21, 2013.
  • Liu, J., Pan, S., Dong, J., Mob, Z., Fan, Y. and Feng, H., Influence of implant number on the biomechanical behavior of mandibular implant-retained / supported overdentures: A three-dimensional finite element analysis, Journal of Dentistry, 41, 241-249, 2013.
  • Cicciu, M., Bramanti, E., Cecchetti, F., Scappaticci, L., Guglielmino, E. and Risitano, G., FEM and Von Mises analyses of different dental implant shapes for masticator loading distribution, Oral&Implantology, 1, 1-10, 2014.
  • Hambli, R., 3D finite element simulation of human proximal femoral fracture under quasi-static load, Biomaterials and Biomechanics in Bioengineering, 1(4), 175-188, 2016. http://dx.doi.org/10.12989/bme.2014.1.4.175.
  • Parkhe, N., Hambire, U., Hambire, C. and Gosavi, S., Enhancing dental implant model by evaluation of three-dimensional finite element analysis, International Journal of Engineering Science Invention, 4(12), 26-33, 2015.
  • Gonzalez, F.J.Q. and Nuno, N., Finite element modeling of manufacturing irregularities of porous materials, Biomaterials and Biomechanics in Bioengineering, 3(1), 1–14, 2016. https://doi.org/10.12989/BME.2016.3.1.001.
  • Mahajan, S. and Patil, R., Application of finite element analysis to optimizing dental implant, International Research Journal of Engineering and Technology, 3(2), 850-856, 2016.
  • Razaghi, R., Mallakzadeh, M. and Haghpanahi, M., Dynamic simulation and finite element analysis of the maxillary bone injury around dental implant. biomedical engineering: applications, Basis and Communications, 28(2), 1-10, 2016.
  • Demenko, V., Linetskiy, I., Linetska, L., Nesvit, V., Shevchenko, A., Yefremov, O. and Weisskircher, H.W., Prognosis of implant longevity in terms of annual bone loss: a methodological finite element study, Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 180-187, 2016. https://doi.org/ 10.1080/10255842.2015.1005079.
  • Macedo, J.P., Pereira, J., Faria, J., C.A. Pereira, J., Alves, L., Henriques, B., Souza, J.C.M. and López-López, J., Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implant, Journal of the Mechanical Behavior of Biomedical Materials, 71, 441-447, 2017. https://doi.org/ 10.1016/j.jmbbm.2017.03.011.
  • Aumnakmanee, S., Yodpiji, N., Jantong, N. and Jongprasithporn, M., Finite element analysis of dental implant prosthetic, Materials Today: Proceedings, 5, 9525–9534, 2018. https://doi.org/10.1016/j.matpr.2017.10.134.
  • Jafarian, M., Mirhashemi, F.S. and Emadi, N., Finite element analysis of stress distribution around a dental implant with different amounts of bone loss: An in vitro study, Dental and Medical Problems, 56(1), 27-32, 2019. https://doi.org/ 10.17219/dmp/102710.
  • Wu, A.Y.J., Hsu, J.T., Fuh, L.J. and Huang, H.L., Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis, Journal of the Formosan Medical Association, 4, 1-10, 2019. https://doi.org/ 10.1016/j.jfma.2019.12.001. Jimenez, V.J.F., Burgueno-Barris, G., Gomez-Gonzalez, S., Lopez-Lopez, J., Valmaseda-Castellon, E. and Fernandez-Aguado. E., Finite element analysis of narrow dental implants, Dental Materials, 36(7), 927-935, 2020.
  • Robau Porrua, A., Perez Rodriquez, Y., Soris Rodriquez, L.M. and Perez Acosta, O., The effect of diameter, length and elastic modulus of a dental implants on stress and strain levels in peri-implant bone: A 3D finite element analysis, Bio-Medical Materials and Engineering, 30, 541-558, 2020. https://doi.org/ 10.3233/bme-191073.
  • Zhong, J., Guazzato, M., Chen, J., Zhang, Z., Sun, G., Huo, X., Liu, X., Ahmad, R. and Li, Q., Effect of different implant configurations on biomechanical behavior of full-arch implant-supported mandibular monolithic zirconia fixed prostheses, Journal of the Mechanical Behavior of Biomedical Materials, 102, 1-10, 2020. https://doi.org/ 10.1016/j.jmbbm.2019.103490.
  • Terzi, M., Güvercin, Y., Ateş, S.M., Sekban, D.M. and Yaylacı M., Effect of different abutment materials on stress distribution in peripheral bone and dental implant system, Sigma Journal of Engineering and Natural Sciences, 38(3), 1495-1507, 2020.
  • Solidworks 2018, (2018). Dassault Systèmes Solidworks Corporation. Waltham MA, USA.
  • ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.
  • Wadatkar, N.D., Londhe, S.D. and Metkar R.M., Stress analysis of fractured femur bone and implant of different metallic biomaterials, Trends in Biomaterials and Artificial Organs, 34(3), 96-99, 2020.
  • Korkmaz, H.H., Evaluation of different miniplates in fxation of fractured human mandible with the finite element method, Oral Surg Oral Med Oral Path Oral Radiol Endod, 103(6), 1-13, 2007.

Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution

Year 2020, Volume: 12 Issue: 4, 138 - 152, 29.12.2020
https://doi.org/10.24107/ijeas.816227

Abstract

Dental implant applications for edentulous jaws are today considered a predictable, safe, and daily technique for giving patients new aesthetics and function. However, the success of the implant therapy should be thoroughly investigated for long-term clinical results about the stress distribution in hosting bone tissue and prosthetic components. In this study, the effect of different prosthesis designs on the stress distribution around the abutment and dental implant in bone tissue was investigated using the finite element method (FEM) with Workbench module of the ANSYS package program. The examination focuses on the effect of the number of implants in teeth layouts on the distribution of stresses, strains, and displacements. In the study the historical development of dental implant problems is mentioned, and some previous studies are summarized. Critical information is also given about biomechanics, dental implants, jawbone, teeth, and the finite element method. Totally four different cases, one layout with three implants and three layouts with two implants, were analyzed. Titanium was used as an implant and abutment material. Nobel Active implants and abutments manufactured by Nobel BioCare Company were used for complete toothless lower jaw case. The critical stress, strain, and displacement values were determined for all four different scenarios. As a result, it was concluded that stresses, strains, and displacements have lower values for the design of triple dental implants compared to other layouts.

References

  • Uzun, B. and Civalek, O., Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials, Mathematical and Computational Applications, 24, 38, 2019.
  • Jalaei, M. and Civalek, Ӧ., On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, International Journal of Engineering Science, 143, 14-32, 2019.
  • Civalek, O., Uzun, B., Yaylı, M.O. and Akgöz, B., Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method, European Physical Journal Plus, 135, 381, 2020.
  • Civalek, Ö. and Demir, C., A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Applied Mathematics and Computation, 289, 335-352, 2016.
  • Gurses, M., Akgoz, B. and Civalek, O., Mathematical modeling of vibration problem of nanosized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation, Applied Mathematics and Computation, 219, 3226- 3240, 2012.
  • Yaylaci, M. and Avcar, M., Finite element modeling of contact between an elastic layer and two elastic quarter planes, Computers and Concrete, 26(2), 107-114, 2020.
  • Yaylaci, M., Terzi, C. and Avcar, M., Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane, Structural Engineering and Mechanics, 72(6), 775-783, 2019.
  • Yaylacı, M., Bayrak, M.Ç. and Avcar, M., Finite element modeling of receding contact problem, International Journal of Engineering and Applied Sciences, 11(4) 468-475, 2019.
  • Chen, J., Ahmad, R., Suenaga, H., Li W., Swain, M. and Li Q., A comparative study on complete and implant retained denture treatments – A biomechanics perspective, Journal of Biomechanics, 48(3), 512-519, 2015. https://doi.org/10.1016/j.jbiomech.2014.11.043.
  • Van Osterwyck, H., Duyck, J., Vander, S., Vander, P.G., Decoomans, M., Lieven, S., Puers, R. and Naert, L., The influence of bone mechanical properties and implant fixation upon bone loading around oral implants, Clin Oral Implants Res, 9(6), 407-412, 1998. https://doi.org/10.1034/j.1600-0501.1996.090606.x
  • Geng, J.P., Tan, K.B. and Liu, G.R., Application of finite element analysis in implant dentistry: a review of the literature, Journal of Prosthetic Dentistry, 85(6), 585-98, 2001. https://doi.org/ 10.1067/mpr.2001.115251.
  • Kunavisarut, C., Lisa, A.. Lang, L.A., Stoner, B.R. and Felton, D.A., Finite element analysis on dental implant- supported prostheses without passive fit, Journal of Prosthodontics, 11(1), 30-40, 2002. https://doi.org/ 10.1111/j.1532-849x.2002.00030.x.
  • Ding, X., Zhu, X.H., Liao, S.H., Zhang, X.H. and Chen, H., Implant–Bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis, Journal of Prosthodontics, 18, 393–402, 2009. https://doi.org/ 10.1111/j.1532-849X.2009.00453.x.
  • Hsu, M.L. and Chang, C.L., Application of finite element analysis in dentistry, Finite Element Analysis, 5, 43-6, 2010.
  • Kumar, G.A., Kovoor, L.C. and Oommen, V.M., Three-dimensional finite element analysis of the stress distribution around the implant and tooth in tooth implant- supported fixed prosthesis designs, Journal of Dental Implants, 1(2), 75-79, 2011.
  • El-Anwar, M.I. and El-Zawahry, M.M., A three-dimensional finite element study on dental implant design, Journal of Genetic Engineering and Biotechnology, 9(1), 77-82, 2011. https://doi.org/10.1016/j.jgeb.2011.05.007.
  • Baggi, L., Pastore, S., Girolamo, M.D. and Vairo, G., Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: A three-dimensional finite element approach, The Journal of Prosthetic Dentistry, 109(1), 9-21, 2013.
  • Liu, J., Pan, S., Dong, J., Mob, Z., Fan, Y. and Feng, H., Influence of implant number on the biomechanical behavior of mandibular implant-retained / supported overdentures: A three-dimensional finite element analysis, Journal of Dentistry, 41, 241-249, 2013.
  • Cicciu, M., Bramanti, E., Cecchetti, F., Scappaticci, L., Guglielmino, E. and Risitano, G., FEM and Von Mises analyses of different dental implant shapes for masticator loading distribution, Oral&Implantology, 1, 1-10, 2014.
  • Hambli, R., 3D finite element simulation of human proximal femoral fracture under quasi-static load, Biomaterials and Biomechanics in Bioengineering, 1(4), 175-188, 2016. http://dx.doi.org/10.12989/bme.2014.1.4.175.
  • Parkhe, N., Hambire, U., Hambire, C. and Gosavi, S., Enhancing dental implant model by evaluation of three-dimensional finite element analysis, International Journal of Engineering Science Invention, 4(12), 26-33, 2015.
  • Gonzalez, F.J.Q. and Nuno, N., Finite element modeling of manufacturing irregularities of porous materials, Biomaterials and Biomechanics in Bioengineering, 3(1), 1–14, 2016. https://doi.org/10.12989/BME.2016.3.1.001.
  • Mahajan, S. and Patil, R., Application of finite element analysis to optimizing dental implant, International Research Journal of Engineering and Technology, 3(2), 850-856, 2016.
  • Razaghi, R., Mallakzadeh, M. and Haghpanahi, M., Dynamic simulation and finite element analysis of the maxillary bone injury around dental implant. biomedical engineering: applications, Basis and Communications, 28(2), 1-10, 2016.
  • Demenko, V., Linetskiy, I., Linetska, L., Nesvit, V., Shevchenko, A., Yefremov, O. and Weisskircher, H.W., Prognosis of implant longevity in terms of annual bone loss: a methodological finite element study, Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 180-187, 2016. https://doi.org/ 10.1080/10255842.2015.1005079.
  • Macedo, J.P., Pereira, J., Faria, J., C.A. Pereira, J., Alves, L., Henriques, B., Souza, J.C.M. and López-López, J., Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implant, Journal of the Mechanical Behavior of Biomedical Materials, 71, 441-447, 2017. https://doi.org/ 10.1016/j.jmbbm.2017.03.011.
  • Aumnakmanee, S., Yodpiji, N., Jantong, N. and Jongprasithporn, M., Finite element analysis of dental implant prosthetic, Materials Today: Proceedings, 5, 9525–9534, 2018. https://doi.org/10.1016/j.matpr.2017.10.134.
  • Jafarian, M., Mirhashemi, F.S. and Emadi, N., Finite element analysis of stress distribution around a dental implant with different amounts of bone loss: An in vitro study, Dental and Medical Problems, 56(1), 27-32, 2019. https://doi.org/ 10.17219/dmp/102710.
  • Wu, A.Y.J., Hsu, J.T., Fuh, L.J. and Huang, H.L., Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis, Journal of the Formosan Medical Association, 4, 1-10, 2019. https://doi.org/ 10.1016/j.jfma.2019.12.001. Jimenez, V.J.F., Burgueno-Barris, G., Gomez-Gonzalez, S., Lopez-Lopez, J., Valmaseda-Castellon, E. and Fernandez-Aguado. E., Finite element analysis of narrow dental implants, Dental Materials, 36(7), 927-935, 2020.
  • Robau Porrua, A., Perez Rodriquez, Y., Soris Rodriquez, L.M. and Perez Acosta, O., The effect of diameter, length and elastic modulus of a dental implants on stress and strain levels in peri-implant bone: A 3D finite element analysis, Bio-Medical Materials and Engineering, 30, 541-558, 2020. https://doi.org/ 10.3233/bme-191073.
  • Zhong, J., Guazzato, M., Chen, J., Zhang, Z., Sun, G., Huo, X., Liu, X., Ahmad, R. and Li, Q., Effect of different implant configurations on biomechanical behavior of full-arch implant-supported mandibular monolithic zirconia fixed prostheses, Journal of the Mechanical Behavior of Biomedical Materials, 102, 1-10, 2020. https://doi.org/ 10.1016/j.jmbbm.2019.103490.
  • Terzi, M., Güvercin, Y., Ateş, S.M., Sekban, D.M. and Yaylacı M., Effect of different abutment materials on stress distribution in peripheral bone and dental implant system, Sigma Journal of Engineering and Natural Sciences, 38(3), 1495-1507, 2020.
  • Solidworks 2018, (2018). Dassault Systèmes Solidworks Corporation. Waltham MA, USA.
  • ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.
  • Wadatkar, N.D., Londhe, S.D. and Metkar R.M., Stress analysis of fractured femur bone and implant of different metallic biomaterials, Trends in Biomaterials and Artificial Organs, 34(3), 96-99, 2020.
  • Korkmaz, H.H., Evaluation of different miniplates in fxation of fractured human mandible with the finite element method, Oral Surg Oral Med Oral Path Oral Radiol Endod, 103(6), 1-13, 2007.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gözde Nur Nişanci This is me 0000-0002-1976-1948

Yılmaz Güvercin This is me 0000-0003-1861-2083

Sabit Melih Ateş 0000-0001-7137-2096

Hasan Ölmez 0000-0001-5351-4046

Ecren Uzun Yaylacı This is me 0000-0002-2558-2487

Murat Yaylacı 0000-0003-0407-1685

Publication Date December 29, 2020
Acceptance Date December 24, 2020
Published in Issue Year 2020 Volume: 12 Issue: 4

Cite

APA Nişanci, G. N., Güvercin, Y., Ateş, S. M., Ölmez, H., et al. (2020). Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution. International Journal of Engineering and Applied Sciences, 12(4), 138-152. https://doi.org/10.24107/ijeas.816227
AMA Nişanci GN, Güvercin Y, Ateş SM, Ölmez H, Uzun Yaylacı E, Yaylacı M. Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution. IJEAS. December 2020;12(4):138-152. doi:10.24107/ijeas.816227
Chicago Nişanci, Gözde Nur, Yılmaz Güvercin, Sabit Melih Ateş, Hasan Ölmez, Ecren Uzun Yaylacı, and Murat Yaylacı. “Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution”. International Journal of Engineering and Applied Sciences 12, no. 4 (December 2020): 138-52. https://doi.org/10.24107/ijeas.816227.
EndNote Nişanci GN, Güvercin Y, Ateş SM, Ölmez H, Uzun Yaylacı E, Yaylacı M (December 1, 2020) Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution. International Journal of Engineering and Applied Sciences 12 4 138–152.
IEEE G. N. Nişanci, Y. Güvercin, S. M. Ateş, H. Ölmez, E. Uzun Yaylacı, and M. Yaylacı, “Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution”, IJEAS, vol. 12, no. 4, pp. 138–152, 2020, doi: 10.24107/ijeas.816227.
ISNAD Nişanci, Gözde Nur et al. “Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution”. International Journal of Engineering and Applied Sciences 12/4 (December 2020), 138-152. https://doi.org/10.24107/ijeas.816227.
JAMA Nişanci GN, Güvercin Y, Ateş SM, Ölmez H, Uzun Yaylacı E, Yaylacı M. Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution. IJEAS. 2020;12:138–152.
MLA Nişanci, Gözde Nur et al. “Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution”. International Journal of Engineering and Applied Sciences, vol. 12, no. 4, 2020, pp. 138-52, doi:10.24107/ijeas.816227.
Vancouver Nişanci GN, Güvercin Y, Ateş SM, Ölmez H, Uzun Yaylacı E, Yaylacı M. Investigation of The Effect of Different Prosthesis Designs and Numbers on Stress, Strain and Deformation Distribution. IJEAS. 2020;12(4):138-52.

21357