Research Article
BibTex RIS Cite

Polioksimetilen Kopolimerinin Su Jeti Tezgâhlarında İşlenebilirliğinin Taguchi Metodu Kullanılarak Optimizasyonu

Year 2021, , 333 - 349, 15.07.2021
https://doi.org/10.47898/ijeased.842732

Abstract

Mühendislik polimeri olan polioksimetilen kopolimer (POM-C) yüksek çekme mukavemeti, aşınma direnci ve boyut kararlılığı gibi mekanik özelliklerinden dolayı günümüzde havacılık, otomotiv ve gemi sanayinde faaliyet gösteren birçok sanayi alanında kullanılmaktadır. Bu polimerler kullanım alanlarına göre şekillendirilmesi gerekmektedir. Şekillendirme yöntemlerden bir tanesi de su jeti tezgahlarıdır. Kesme sonrası, talaş oluşum sorununu ortadan kaldırması nedeniyle su jeti ile kesme genelde çok sert ve kırılgan olmayan malzemeler için uygundur. Polimerler, bu malzeme grubuna girmemekle birlikte, kesme işlemi esnasında yüksek ısıların oluşmaması bundan dolayı polimerlerin yapısal olarak bozulmaması, daha küçük ve karmaşık şekillerin rahatlıkla işlenmesi, su jeti ile üretimin, diğer üretim metodlarına göre daha hızlı olması, aynı zamanda mühendislik polimerlerinin pahalı olması, uygulanan metotta daha az malzemenin israf olması polimerlerin su jeti tezgahlarında işlenmesinin başlıca sebeplerindendir. Bu çalışmada polioksimetilen kopolimerine 210, 260, 310 MPa basınçta üç farklı ilerleme hızı ( 170, 240, 380 mm/dk), üç farklı aşındırıcı garnet miktarı (150, 250, 350 g/dk) su jeti tezgâhında kesme işlemi gerçekleştirilmiştir. Deney sonuçlarındaki veriler sinyal - gürültü oranı (S/N), ANOVA analizi, ve regresyon yöntemi uygulanarak incelenmiştir. Yapılan çalışma sonuçlarında su jeti tezgâhında 260 MPa basınçta 350 g/dk garnet miktarı 170 mm/dk ilerleme hızında yüzey pürüzlülüğünün diğer parametrelere göre daha düşük çıktığı, ilerleme hızının su jeti tezgahlarında en etkin parametre olduğu bulunmuştur. 

Supporting Institution

Düzce Üniversitesi

Project Number

Proje no: 2019.21.01.1047

Thanks

Düzce Üniversitesi BAP birimine Proje no: 2019.21.01.1047 projeyi destekledikleri için teşekkür ederiz.

References

  • Akincioğlu, S., Gökkaya, H., Akincioğlu, G., & Karataş, M. A. (2020). Taguchi optimization of surface roughness in the turning of Hastelloy C22 super alloy using cryogenically treated ceramic inserts. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(19), 3826-3836.
  • Akkurt, A. (2009). AISI 1030 Çeliğinin Aşındırıcılı Su Jeti İle Kesilmesinde Yüzey Pürüzlülüğünün Ve Kesme Önü Geometrisinin İncelenmesi. Pamukkale University J Journal of Engineering Sciences, 15(1).
  • Akkurt, A., Kulekci, M. K., Seker, U., & Ercan, F. (2004). Effect of feed rate on surface roughness in abrasive waterjet cutting applications. Journal of Materials Processing Technology, 147(3), 389-396
  • Alberdi, A., Artaza, T., Suárez, A., Rivero, A., & Girot, F. (2016). An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. The International Journal of Advanced Manufacturing Technology, 86(1-4), 691-704.
  • Chanda, M., & Roy, S. K. (2008). Industrial polymers, specialty polymers, and their applications (Vol. 74). CRC press.
  • Dong, Y., Liu, W., Zhang, H., & Zhang, H. (2014). On-line recycling of abrasives in abrasive water jet cleaning. Procedia Cirp, 15, 278-282.
  • Gür, A. K., Taskaya, S., & Çetin, Ö. (2019). Ramor 500 Çeliğinde Isıl İşlemin Mikroyapı, Mikrosertlik ve Abrasiv Aşınma Direncine Etkisinin Taguchi Metoduyla Değerlendirilmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 1045-1056.
  • Gür, A. K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., & Yigitturk, N. (2014). Wear properties of Fe-Cr-C and B4C powder coating on AISI 316 stainless steel analyzed by the Taguchi method. Materials Testing, 56(5), 393-398.
  • Ishfaq, K., Ahmad Mufti, N., Ahmed, N., & Pervaiz, S. (2019). Abrasive waterjet cutting of cladded material: kerf taper and MRR analysis. Materials and Manufacturing Processes, 34(5), 544-553.
  • Jose, A. J., & Alagar, M. (2011). Development and characterization of organoclay‐filled polyoxymethylene nanocomposites for high performance applications. Polymer composites, 32(9), 1315-1324.
  • Karakurt, İ., Aydın, G., & Aydıner, K. (2010). Aşındırıcılı su jeti ile kesmede kesme parametrelerinin granit yüzey pürüzlülüğüne etkisi. Yerbilimleri Dergisi, 31(2), 99-110.
  • Kulekci, M. K. (2002). Processes and apparatus developments in industrial waterjet applications. International Journal of Machine Tools and Manufacture, 42(12), 1297-1306.
  • Kıvak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50, 19-28.
  • Liu, X., Liang, Z., Wen, G., & Yuan, X. (2019). Waterjet machining and research developments: a review. The International Journal of Advanced Manufacturing Technology, 102(5), 1257-1335.
  • Liu, H. T., Hovanski, Y., & Dahl, M. E. (2012). Machining of aircraft titanium with abrasive-waterjets for fatigue critical applications. Journal of pressure vessel technology, 134(1).
  • Mardi, K. B., Dixit, A. R., Mallick, A., Pramanik, A., Ballokova, B., Hvizdos, P., & Zelenak, M. (2017). Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM). Materials and Manufacturing Processes, 32(15), 1707-1714.
  • Mayuet, P. F., Girot, F., Lamíkiz, A., Fernández-Vidal, S. R., Salguero, J., & Marcos, M. (2015). SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Eng, 132, 693-700
  • M, I. W., Azmi, A. I., Lee, C. C., & Mansor, A. F. (2018). Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. The International Journal of Advanced Manufacturing Technology, 94(5-8), 1727-1744.
  • Nas, E., & Altan Özbek, N. (2020). Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools. Surface Review and Letters, 27(05), 1950177.
  • Nas, E., & Öztürk, B. (2018). Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials. Materials Testing, 60(5), 519-525.
  • Roy, R. K. (2010). A primer on the Taguchi method. Society of Manufacturing Engineers.
  • Savaskan, M., Taptik, Y., & Ürgen, M. (2010). Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu. İTÜDERGİSİ/d, 3(6).
  • Schwartzentruber, J., Spelt, J. K., & Papini, M. (2017). Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. International Journal of Machine Tools and Manufacture, 122, 1-17.
  • Shanmugam, D. K., & Masood, S. H. (2009). An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. Journal of materials processing technology, 209(8), 3887-3893.
  • Shanmugam, A., Krishnamurthy, K., & Mohanraj, T. (2020). Experimental Study Of Surface Roughness And Taper Angle In Abrasive Water Jet Machining Of 7075 Aluminum Composite Using Response Surface Methodology. Surface Review and Letters, 27(03), 1950112.
  • Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA (p. 724). Belmont, CA: Thomson/Brooks/Cole.
  • Taşdemir, M. (2019). Ticari Plastikler. Ankara : Seçkin Yayınları.
  • Vikram, G., & Babu, N. R. (2002). Modelling and analysis of abrasive water jet cut surface topography. International Journal of Machine Tools and Manufacture, 42(12), 1345-1354.

Optimization of Polyoxymethylene Copolymer Workability on Water-Jet Machines Using Taguchi Method

Year 2021, , 333 - 349, 15.07.2021
https://doi.org/10.47898/ijeased.842732

Abstract

Polyoxymethylene copolymer (pom-c), which is an engineering polymer, is used in many industries operating in aviation, automotive and ship industries today due to its mechanical properties such as high tensile strength, fly resistance and thermal resistance. These polymers need to be shaped according to their usage areas. Waterjet cutting is generally suitable for very hard and non-brittle materials, as it eliminates the problem of chip formation after cutting. Although polymers do not belong to this group of materials, high temperatures do not occur during the cutting process, therefore the polymers do not deteriorate structurally, smaller and complex shapes can be easily processed, production with water jet is faster than other production methods, at the same time, engineering polymers are expensive, Less material wasted in the method is one of the main reasons polymers are processed on waterjet looms. In this study, three different feed rates (170, 240, 380 mm / min) and three different sand quantities (150, 250, 350 g / min) were cut on a water jet machine at 210, 260, 310 MPa pressure to the polyoxymethylene copolymer. The data in the experimental results were analyzed by applying the signal-to-noise ratio (S / N), ANOVA analysis, and regression method. According to the results of the study, it was found that the sand amount of 350 g / min at 260 MPa pressure and 170 mm / min feed rate was lower than the other parameters and the feed speed was the most effective parameter in water jet looms.

Project Number

Proje no: 2019.21.01.1047

References

  • Akincioğlu, S., Gökkaya, H., Akincioğlu, G., & Karataş, M. A. (2020). Taguchi optimization of surface roughness in the turning of Hastelloy C22 super alloy using cryogenically treated ceramic inserts. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(19), 3826-3836.
  • Akkurt, A. (2009). AISI 1030 Çeliğinin Aşındırıcılı Su Jeti İle Kesilmesinde Yüzey Pürüzlülüğünün Ve Kesme Önü Geometrisinin İncelenmesi. Pamukkale University J Journal of Engineering Sciences, 15(1).
  • Akkurt, A., Kulekci, M. K., Seker, U., & Ercan, F. (2004). Effect of feed rate on surface roughness in abrasive waterjet cutting applications. Journal of Materials Processing Technology, 147(3), 389-396
  • Alberdi, A., Artaza, T., Suárez, A., Rivero, A., & Girot, F. (2016). An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. The International Journal of Advanced Manufacturing Technology, 86(1-4), 691-704.
  • Chanda, M., & Roy, S. K. (2008). Industrial polymers, specialty polymers, and their applications (Vol. 74). CRC press.
  • Dong, Y., Liu, W., Zhang, H., & Zhang, H. (2014). On-line recycling of abrasives in abrasive water jet cleaning. Procedia Cirp, 15, 278-282.
  • Gür, A. K., Taskaya, S., & Çetin, Ö. (2019). Ramor 500 Çeliğinde Isıl İşlemin Mikroyapı, Mikrosertlik ve Abrasiv Aşınma Direncine Etkisinin Taguchi Metoduyla Değerlendirilmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 1045-1056.
  • Gür, A. K., Ozay, C., Orhan, A., Buytoz, S., Caligulu, U., & Yigitturk, N. (2014). Wear properties of Fe-Cr-C and B4C powder coating on AISI 316 stainless steel analyzed by the Taguchi method. Materials Testing, 56(5), 393-398.
  • Ishfaq, K., Ahmad Mufti, N., Ahmed, N., & Pervaiz, S. (2019). Abrasive waterjet cutting of cladded material: kerf taper and MRR analysis. Materials and Manufacturing Processes, 34(5), 544-553.
  • Jose, A. J., & Alagar, M. (2011). Development and characterization of organoclay‐filled polyoxymethylene nanocomposites for high performance applications. Polymer composites, 32(9), 1315-1324.
  • Karakurt, İ., Aydın, G., & Aydıner, K. (2010). Aşındırıcılı su jeti ile kesmede kesme parametrelerinin granit yüzey pürüzlülüğüne etkisi. Yerbilimleri Dergisi, 31(2), 99-110.
  • Kulekci, M. K. (2002). Processes and apparatus developments in industrial waterjet applications. International Journal of Machine Tools and Manufacture, 42(12), 1297-1306.
  • Kıvak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50, 19-28.
  • Liu, X., Liang, Z., Wen, G., & Yuan, X. (2019). Waterjet machining and research developments: a review. The International Journal of Advanced Manufacturing Technology, 102(5), 1257-1335.
  • Liu, H. T., Hovanski, Y., & Dahl, M. E. (2012). Machining of aircraft titanium with abrasive-waterjets for fatigue critical applications. Journal of pressure vessel technology, 134(1).
  • Mardi, K. B., Dixit, A. R., Mallick, A., Pramanik, A., Ballokova, B., Hvizdos, P., & Zelenak, M. (2017). Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM). Materials and Manufacturing Processes, 32(15), 1707-1714.
  • Mayuet, P. F., Girot, F., Lamíkiz, A., Fernández-Vidal, S. R., Salguero, J., & Marcos, M. (2015). SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Eng, 132, 693-700
  • M, I. W., Azmi, A. I., Lee, C. C., & Mansor, A. F. (2018). Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. The International Journal of Advanced Manufacturing Technology, 94(5-8), 1727-1744.
  • Nas, E., & Altan Özbek, N. (2020). Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools. Surface Review and Letters, 27(05), 1950177.
  • Nas, E., & Öztürk, B. (2018). Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials. Materials Testing, 60(5), 519-525.
  • Roy, R. K. (2010). A primer on the Taguchi method. Society of Manufacturing Engineers.
  • Savaskan, M., Taptik, Y., & Ürgen, M. (2010). Deney tasarımı yöntemi ile matkap uçlarında performans optimizasyonu. İTÜDERGİSİ/d, 3(6).
  • Schwartzentruber, J., Spelt, J. K., & Papini, M. (2017). Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. International Journal of Machine Tools and Manufacture, 122, 1-17.
  • Shanmugam, D. K., & Masood, S. H. (2009). An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. Journal of materials processing technology, 209(8), 3887-3893.
  • Shanmugam, A., Krishnamurthy, K., & Mohanraj, T. (2020). Experimental Study Of Surface Roughness And Taper Angle In Abrasive Water Jet Machining Of 7075 Aluminum Composite Using Response Surface Methodology. Surface Review and Letters, 27(03), 1950112.
  • Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA (p. 724). Belmont, CA: Thomson/Brooks/Cole.
  • Taşdemir, M. (2019). Ticari Plastikler. Ankara : Seçkin Yayınları.
  • Vikram, G., & Babu, N. R. (2002). Modelling and analysis of abrasive water jet cut surface topography. International Journal of Machine Tools and Manufacture, 42(12), 1345-1354.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Alirıza Altınsoy 0000-0002-8429-9606

Yusuf Arslan 0000-0003-1731-5423

Project Number Proje no: 2019.21.01.1047
Publication Date July 15, 2021
Submission Date December 18, 2020
Published in Issue Year 2021

Cite

APA Altınsoy, A., & Arslan, Y. (2021). Polioksimetilen Kopolimerinin Su Jeti Tezgâhlarında İşlenebilirliğinin Taguchi Metodu Kullanılarak Optimizasyonu. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 3(1), 333-349. https://doi.org/10.47898/ijeased.842732