Review
BibTex RIS Cite

Protein Based Encapsulation of Antioxidants: Methods, Functionality of Components, and Applications

Year 2019, Volume: 1 Issue: 2, 154 - 163, 15.12.2019

Abstract

This
review focused on the encapsulation of antioxidants as bioactive compound in
proteins. Both proteins and antioxidants are well-known for their nutritional,
supplementary, and structuring effects in foods. Antioxidants are susceptible
to environmental conditions during processing or storage, and thus need to be
protected. Besides being good candidates for protection of antioxidants,
proteins also have important techno-functional properties, such as texturizing
or surfactant properties. An overview of different encapsulation methods of
antioxidants was given. Type of encapsulation, such as complex formation or
core-and-shell model, depends on the production method. Production methods
mainly include a mixture of antioxidant and protein solutions, following a
gelation or hardening step for stabilization. Alternatively, depending on the
nature of the compounds, hydrophobic or electrostatic interactions were also
used for the assembly. Encapsulation of antioxidants can be used for the
protection purposes as well as for controlled release systems in food or
medical products. 

References

  • Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., & Ko, S. (2015). Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry, 173, 7-13.
  • Aziz, S. G. G. & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11, 1552-1565.
  • Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623-631.
  • Baltacıoğlu, H. & Artık, N. (2013). Study of postharvest changes in the chemical composition of persimmon by HPLC. Turkish Journal of Agriculture and Forestry, 37, 568-574.
  • Desai, K. G. H., & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23, 1361-1394.
  • Diepvens, K., Haberer, D., & Westerterp-Plantenga, M. (2008). Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. International Journal of Obesity, 32, 510-518.
  • Donsi, F., Sessa, M., Mediouni, H., Mgaidi, A., & Ferrari, G. (2011). Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Science, 1, 1666-1671.
  • Du, Y., Bao, C., Huang, J., Jiang, P., Jiao, L., Ren, F., & Li, Y. (2019). Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles. Food Chemistry, 271, 707-714.
  • Ebert, S., Koo, C. K., Weiss, J., & McClements, D. J. (2017). Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Research International, 92, 48-55.
  • Ferreira, I., Rocha, S., & Coelho, M. (2007). Encapsulation of antioxidants by spray-drying. Chemical Engineering Transactions, 11, 713-717.
  • Flora, S. J. S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2, 191-206.
  • Foegeding, E. A., Plundrich, N., Schneider, M., Campbell, C., & Lila, M. A. (2017). Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocolloids, 72, 163-173.
  • Frank, K., Walz, E., Graf, V., Greiner, R., Köhler, K., & Schuchmann H. P. (2012). Stability of anthocyanin-rich w/o/w-emulsions designed for intestinal release in gastrointestinal environment. Journal of Food Science, 77, 50-57.
  • Gibbs, B.F., Kermasha, S., Alli, I. & Mulligan, C.N. (1999). Encapsulation in the food industry: a review. International Journal of Food Science & Nutrition, 50, 213–224.
  • Gutierrez-Grijalva, E. P., Ambriz-Pere, D. L., Leyva-Lopez, N., Castillo-Lopez, R., & Heredia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutricion, 60, 87-100.
  • Hoffmann, H., & Reger, M. (2014). Emulsions with unique properties from proteins as emulsifiers. Advances in Colloid and Interface Science, 205, 94–104.
  • Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11, 1422-1436.
  • Josic, J., Olsson, A. T., Wickeberg, J., Lindstedt, S., & Hlebowicz, J. (2010). Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: A randomized controlled trial. Nutrition Journal, 9, 63-70.
  • Kiyomi Okuro, P., de Matos Junior, F. E., & Favaro-Trindade, C. S. (2013). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technology and Biotechnology, 51, 171-182.
  • Lau, H. H., Murney, R., Yakovlev, N. L., Novoselova, M. V., Lim, S. H., Roy, N., Singh, H., Sukhorukov, G. B., Haigh, B., & Kiryukhin, M. V. (2017). Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. Journal of Colloid and Interface Science, 505, 332-340.
  • Munin, A., & Edwards-Levy, F. (2011). Encapsulation of natural polyphenolic compounds, a Review. Pharmaceutics, 3, 793-829.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
  • Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43,e12761.
  • Oboh, G., Ademosun, A. O., Ademiluyi, A. O., Omojokun, O. S., Nwanna, E. E., & Longe, K. O. (2014). In vitro studies on the antioxidant property and inhibition of α-amylase, α-glucosidase, and angiotensin I-converting enzyme by polyphenol-rich extracts from cocoa (Theobroma cacao) bean. Pathology Research International, 2014, 1-6.
  • Ozkan, G., Franco, P., de Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506.
  • Pal, S., & Ellis, V. (2010). The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. British Journal of Nutrition, 104, 1241-1248.
  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45, 1386-1394.
  • Sagis, L. M. C. & Scholten, E. (2014). Complex interfaces in food: Structure and mechanical properties. Trends in Food Science and Technology, 37, 59-71.
  • Shpigelman, A., Cohen, Y., & Livney, Y. D. (2012). Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids, 29, 57-67.
  • Silva, S., Veiga, M. Costa, E. M., Oliveira, A. L. S., Madureira, A. R., & Pintado, M. (2018). Nanoencapsulation of polyphenols towards dairy beverage incorporation. Beverages, 4, 61-77.
  • Wang, L., Gao, Y., Li, J., Subirade, M., Song, Y., & Liang, L. (2016). Effect of resveratrol or ascorbic acid on the stability of α-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant. Food Chemistry, 196, 466-474.
  • Yao, K., Chen, W., Song, F., McClements, D. J., & Hu, K. (2018). Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocolloids, 79, 262-272.
  • Zhang, Z., Zhang, R., & McClements, D. J. (2016). Encapsulation of β-carotene in alginate-based hydrogel beads: impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, 61, 1-10.
  • Zhuang, F., Li, X., Hu, J., Liu, X., Zhang, S., Tang, C., & Zhou, P. (2018). Effects of casein micellar structure on the stability of milk protein-based conjugated linoleic acid microcapsules. Food Chemistry, 269, 327-334.
  • Zuidam, N. J., & Heinrich J. (2009). Encapsulation of aroma. In: Zuidam, N.J., Nedovic, V.A., (Eds.). Encapsulation Technologies for Food Active Ingredients and Food Processing; Springer: Dordrecht, The Netherlands; p. 127-60.

Protein Temelli Antioksidan Enkapsülasyonu: Metotlar, Bileşenlerin Fonksiyonları ve Uygulamalar

Year 2019, Volume: 1 Issue: 2, 154 - 163, 15.12.2019

Abstract

Bu derleme biyoaktif madde olarak antioksidanların
proteinler içinde enkapsülasyonlarına odaklanmıştır. Proteinler ve
antioksidanlar gıdalarda besleyici, takviye edici ve yapısal özellik
geliştirmeleri ile bilinir. Antioksidanlar proses ve depolama sırasında
çevresel faktörlerden çok etkilenir, bu yüzden korunmalıdır. Proteinler,
antioksidanları korumaya iyi bir aday olmasının yanı sıra, tekstür geliştirme
ve yüzey aktif özellikler gibi tekno-fonksiyonel özelliklere de sahiptir. Antioksidanların
farklı enkapsülasyon yöntemleri genel olarak anlatılmıştır. Enkapsülasyon
türleri, örneğin kompleks oluşumu ya da çekirdek-kabuk modeli, üretim metoduna
bağlıdır. Üretim metotları temelde antioksidan ve protein çözeltilerinin karışımını,
sonrasında da jelleşme ve stabilizasyon için katılaşma basamaklarını içerir.
Ayrıca, kompleks oluşumu için bileşenlerin yapısına bağlı olarak, hidrofobik
veya elektrostatik etkileşimler de kullanılabilir. Antioksidanların
enkapsülasyonu, koruma amaçlı kullanılabileceği gibi gıda veya medikal
ürünlerinde kontrollü salınım sistemlerinde de kullanılabilir. 

References

  • Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., & Ko, S. (2015). Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry, 173, 7-13.
  • Aziz, S. G. G. & Almasi, H. (2018). Physical characteristics, release properties, and antioxidant and antimicrobial activities of whey protein isolate films incorporated with thyme (Thymus vulgaris L.) extract-loaded nanoliposomes. Food and Bioprocess Technology, 11, 1552-1565.
  • Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623-631.
  • Baltacıoğlu, H. & Artık, N. (2013). Study of postharvest changes in the chemical composition of persimmon by HPLC. Turkish Journal of Agriculture and Forestry, 37, 568-574.
  • Desai, K. G. H., & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23, 1361-1394.
  • Diepvens, K., Haberer, D., & Westerterp-Plantenga, M. (2008). Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. International Journal of Obesity, 32, 510-518.
  • Donsi, F., Sessa, M., Mediouni, H., Mgaidi, A., & Ferrari, G. (2011). Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Science, 1, 1666-1671.
  • Du, Y., Bao, C., Huang, J., Jiang, P., Jiao, L., Ren, F., & Li, Y. (2019). Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles. Food Chemistry, 271, 707-714.
  • Ebert, S., Koo, C. K., Weiss, J., & McClements, D. J. (2017). Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Research International, 92, 48-55.
  • Ferreira, I., Rocha, S., & Coelho, M. (2007). Encapsulation of antioxidants by spray-drying. Chemical Engineering Transactions, 11, 713-717.
  • Flora, S. J. S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2, 191-206.
  • Foegeding, E. A., Plundrich, N., Schneider, M., Campbell, C., & Lila, M. A. (2017). Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocolloids, 72, 163-173.
  • Frank, K., Walz, E., Graf, V., Greiner, R., Köhler, K., & Schuchmann H. P. (2012). Stability of anthocyanin-rich w/o/w-emulsions designed for intestinal release in gastrointestinal environment. Journal of Food Science, 77, 50-57.
  • Gibbs, B.F., Kermasha, S., Alli, I. & Mulligan, C.N. (1999). Encapsulation in the food industry: a review. International Journal of Food Science & Nutrition, 50, 213–224.
  • Gutierrez-Grijalva, E. P., Ambriz-Pere, D. L., Leyva-Lopez, N., Castillo-Lopez, R., & Heredia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutricion, 60, 87-100.
  • Hoffmann, H., & Reger, M. (2014). Emulsions with unique properties from proteins as emulsifiers. Advances in Colloid and Interface Science, 205, 94–104.
  • Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11, 1422-1436.
  • Josic, J., Olsson, A. T., Wickeberg, J., Lindstedt, S., & Hlebowicz, J. (2010). Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: A randomized controlled trial. Nutrition Journal, 9, 63-70.
  • Kiyomi Okuro, P., de Matos Junior, F. E., & Favaro-Trindade, C. S. (2013). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technology and Biotechnology, 51, 171-182.
  • Lau, H. H., Murney, R., Yakovlev, N. L., Novoselova, M. V., Lim, S. H., Roy, N., Singh, H., Sukhorukov, G. B., Haigh, B., & Kiryukhin, M. V. (2017). Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives. Journal of Colloid and Interface Science, 505, 332-340.
  • Munin, A., & Edwards-Levy, F. (2011). Encapsulation of natural polyphenolic compounds, a Review. Pharmaceutics, 3, 793-829.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
  • Nwachukwu, I. D., & Aluko, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43,e12761.
  • Oboh, G., Ademosun, A. O., Ademiluyi, A. O., Omojokun, O. S., Nwanna, E. E., & Longe, K. O. (2014). In vitro studies on the antioxidant property and inhibition of α-amylase, α-glucosidase, and angiotensin I-converting enzyme by polyphenol-rich extracts from cocoa (Theobroma cacao) bean. Pathology Research International, 2014, 1-6.
  • Ozkan, G., Franco, P., de Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506.
  • Pal, S., & Ellis, V. (2010). The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. British Journal of Nutrition, 104, 1241-1248.
  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45, 1386-1394.
  • Sagis, L. M. C. & Scholten, E. (2014). Complex interfaces in food: Structure and mechanical properties. Trends in Food Science and Technology, 37, 59-71.
  • Shpigelman, A., Cohen, Y., & Livney, Y. D. (2012). Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids, 29, 57-67.
  • Silva, S., Veiga, M. Costa, E. M., Oliveira, A. L. S., Madureira, A. R., & Pintado, M. (2018). Nanoencapsulation of polyphenols towards dairy beverage incorporation. Beverages, 4, 61-77.
  • Wang, L., Gao, Y., Li, J., Subirade, M., Song, Y., & Liang, L. (2016). Effect of resveratrol or ascorbic acid on the stability of α-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant. Food Chemistry, 196, 466-474.
  • Yao, K., Chen, W., Song, F., McClements, D. J., & Hu, K. (2018). Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocolloids, 79, 262-272.
  • Zhang, Z., Zhang, R., & McClements, D. J. (2016). Encapsulation of β-carotene in alginate-based hydrogel beads: impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, 61, 1-10.
  • Zhuang, F., Li, X., Hu, J., Liu, X., Zhang, S., Tang, C., & Zhou, P. (2018). Effects of casein micellar structure on the stability of milk protein-based conjugated linoleic acid microcapsules. Food Chemistry, 269, 327-334.
  • Zuidam, N. J., & Heinrich J. (2009). Encapsulation of aroma. In: Zuidam, N.J., Nedovic, V.A., (Eds.). Encapsulation Technologies for Food Active Ingredients and Food Processing; Springer: Dordrecht, The Netherlands; p. 127-60.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Farnaz Naserifar 0000-0002-3857-4363

Özge Özer 0000-0001-7751-1800

Alev Emine İnce Coşkun 0000-0002-8952-4913

Publication Date December 15, 2019
Submission Date August 16, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Naserifar, F., Özer, Ö., & İnce Coşkun, A. E. (2019). Protein Based Encapsulation of Antioxidants: Methods, Functionality of Components, and Applications. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 1(2), 154-163.