Abstract
Polyoxymethylene copolymer (pom-c), which is an engineering polymer, is used in many industries operating in aviation, automotive and ship industries today due to its mechanical properties such as high tensile strength, fly resistance and thermal resistance. These polymers need to be shaped according to their usage areas. Waterjet cutting is generally suitable for very hard and non-brittle materials, as it eliminates the problem of chip formation after cutting. Although polymers do not belong to this group of materials, high temperatures do not occur during the cutting process, therefore the polymers do not deteriorate structurally, smaller and complex shapes can be easily processed, production with water jet is faster than other production methods, at the same time, engineering polymers are expensive, Less material wasted in the method is one of the main reasons polymers are processed on waterjet looms. In this study, three different feed rates (170, 240, 380 mm / min) and three different sand quantities (150, 250, 350 g / min) were cut on a water jet machine at 210, 260, 310 MPa pressure to the polyoxymethylene copolymer. The data in the experimental results were analyzed by applying the signal-to-noise ratio (S / N), ANOVA analysis, and regression method. According to the results of the study, it was found that the sand amount of 350 g / min at 260 MPa pressure and 170 mm / min feed rate was lower than the other parameters and the feed speed was the most effective parameter in water jet looms.