Review
PDF Zotero Mendeley EndNote BibTex Cite

Use of Fungi as Microbial Fertilizer or Biopesticide in Agriculture

Year 2021, Volume 3, Issue 1, 167 - 191, 15.07.2021
https://doi.org/10.47898/ijeased.849817

Abstract

Fungi used as one of the biological factors constitute an important group in biological control studies. In this review, the role of entomopathogenic fungi used in biological control in ensuring the natural balance of pest populations and the interactions of mycorrhizal fungi with plant, soil and plant pathogens in biological control are mentioned. In addition, information was given about the action mechanisms of entomopathogenic fungi and mycorrhizal fungi in biological control and their contribution to plant growth. It is aimed to emphasize that entomopathogenic fungi and mycorrhizaes can be used successfully both in plant protection and in plant nutrition against chemicals in agriculture. In this regard, the work done in Turkey to be taken a little further point in giving weight to the carrier formulation and updating of the regulations on licensing according to scientific studies will be very useful.

References

  • Agrios, G. N. (2005). Plant pathology. Academic Press.
  • Alamy, (2012). https://www.alamy.com/stock-photo-development-of-entomopathogenic-fungus-verticillium-lecanii-on-aphid-49319046.html (Erişim tarihi: 19.01.2021)
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
  • Ali S., Huang Z., ve Ren S. (2013). Effect of fungicides on growth, germination and cuticle-degrading enzyme production by Lecanicillium muscarium. Biocontrol Science and Technology, 23: 711–723.
  • Amutha, M., Gulsar Banu, J., Surulivelu, T., ve Gopalakrishnan, N. (2010). Effect of commonly used insecticides on the growth of white Muscardine fungus, Beauveria bassiana under laboratory conditions. Journal of Biopesticides, 3:143–146.
  • Anonim, (2015). Bitki Koruma Ürünleri ve Pestisit Kalıntıları. TC. Gıda Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Ezgi Ofset, ISBN: 978-605-9175-16-6.
  • Asi, M. R., Bashir, M. H., Afzal, M. vd. (2010). Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan Journal of Botany, 42: 4207–4214.
  • Audoin, V. (1837). Nouvelles expériences sur la nature de la maladie contagieuse qui attaque les vers à soie et qu'on désigne sous le nom de Muscardine. Ann. Sci. Nat., 8, 257-270.
  • Ayyıldız, N., Emekci, M., ve Ferizli, A. G. (2018). Türkiye’de pestisitlerin ruhsatlandırılmasının tarihsel değişimi ve gelişimi üzerine değerlendirmeler. Türkiye Entomoloji Bülteni, 8(1-2): 35-50.
  • Avery, P. B., Pick, D. A., Aristizábal, L. F., vd. (2013). Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) blastospores with agricultural chemicals used for management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 4: 694–711.
  • Bagga, S., Hu, G., Screen, S. E, ve Leger, R. J. S. (2004). Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene, 324: 159–169.
  • Barra-Bucarei, L., Iglesias, A. F., ve Torres, C. P. (2019). Entomopathogenic Fungi. In Natural Enemies of Insect Pests in Neotropical Agroecosystems (pp. 123-136). Springer, Cham.
  • Boruta, T. (2018). Uncovering the repertoire of fungal secondary metabolites: From Fleming’s laboratory to the International Space Station. Bioengineered, 9 (1): 12–16.
  • Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11 (1): 21-32.
  • Butt, T. M., Jackson, C., ve Magan, N. (2001). Fungi as Biocontrol Agents, Progress, Problems and Potential, CABI Publishing, CAB International.
  • Cantürk, Z. (2015). Aspergillus ve Penicillium cinslerine ait sekonder metabolitler ve sınıflandırılması. Elektronik Mikrobiyoloji Dergisi TR, 13 (2): 1-8.
  • Castro, T., Mayerhofer, J., Enkerli, J., Eilenberg, J., Meyling, N. V., de Andrade Moral, R., ... ve Delalibera Jr, I. (2016). Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agriculture, Ecosystems & Environment, 233, 361-369.
  • Ceballos, I., Ruiz, M., Fernandez, C., Pena, R., Rodriguez, A., ve Sanders, I. R. (2013). The in vitro mass produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop Cassava. PLoS ONE, 8: e70633.
  • Celar, F. A, ve Kos, K. (2016). Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest Management Science, 72:2110–2117.
  • Dağ, S. (2000). Türkiye'de Tarım İlaçları Endüstrisi ve Geleceği, V. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildirileri 2. Cilt, TMMOB Ziraat Mühendisleri Odası, Ankara, s. 933-958, 17-21 Ocak 2000. 5.
  • D’Alessandro, C. P., Padin, S., Urrutia, M. I., ve López Lastra, C. C. (2011). Interaction of fungicides with the entomopathogenic fungus Isaria fumosorosea. Biocontrol Science and Technology, 21: 189–197.
  • Dara, S. K. (2017). Entomopathogenic microorganisms: modes of action and role in IPM. Agriculture and Natural Blogs, University of California, 7p.
  • Davis, J. R., Brownson, R. C., Garcia, R., Bentz, B. J., ve Turner, A. (1993). Family pesticide use and childhood brain cancer. Archives of Environmental Contamination and Toxicology, 24 (1): 87-92.
  • Dehne, H. W., ve Schanbeck, F. (1979). Untersuchungen zum Einfluss der Endotrophen Mykorrhiza auf Pflanzenkrankheiten. II. Phenolstoffwechsel und Lignifizierung, Phytopathology, 95, 214-216.
  • Delen N., Durmuşoğlu E., Güncan A., Güngör N., Turgut C., ve Burçak A. (2005). Türkiye’de Pestisit Kullanımı, Kalıntı ve Organizmalarda Duyarlılık Azalışı Sorunları, VI. Türkiye Ziraat Mühendisliği Teknik Kongresi.
  • Delen, N., Tiryaki, O., Türkseven, S., ve Temur, C. (2015). Türkiye’de pestisit kullanımı kalıntı ve dayanıklılık sorunları, çözüm önerileri ss, 758-778. Türkiye Ziraat Müh. VIII. Teknik Kongresi, 12-16 Ocak 2015, Türkiye.
  • Demirci, F., Muştu, M., Kaydan, M. B., ve Ülgentürk, S. (2011). Effects of some fungicides on Isariafarinosa, and in vitro growth and infection rate on Planococcus citri. Phytoparasitica, 39: 353–360.
  • Doğan, Z., Arslan, S., ve Berkman, A. N. (2015). Türkiye’de Tarım Sektörünün İktisadi Gelişimi ve Sorunları. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8 (1): 29-41. ISSN: 2148-5801.
  • E-Journal of Entomology and Biologicals (2017). https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=24119. (Erişim tarihi: 19.01.2021)
  • Fiedler, Z., ve Sosnowska, D. (2017). Side effects of fungicides and insecticides on entomopathogenic fungi in vitro. Journal of Plant Protection Research, 57: 355–360.
  • Forestry images, (2018). https://www.forestryimages.org/browse/detail.cfm?imgnum=5368217. (Erişim tarihi: 19.01.2021)
  • Forlani, L., Juárez, M. P., Lavarías, S., ve Pedrini, N. (2014). Toxicological and biochemical response of the entomopathogenic fungus Beauveria bassiana after exposure to deltamethrin. Pest Management Science, 70: 751–756.
  • Gelernter, W. D., ve Lomer, C. J. (2000). Success in biological control of above-ground insects by pathogens. In: Gurr G, Wratten S (eds) Biological control: measures of success. Kluwer Academic, Dordrecht, The Netherlands, pp 297–322.
  • Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., ve Kariman, K. (2017). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117: 147-157.
  • Goettel, M. S., ve Hajek, A. E. (2000). Evaluation of non-target effects of pathogens used for management of arthropods. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Publishing, Wallingford, pp 81–97.
  • Gola, D., Malik, A., Namburath, M., ve Ahammad, S. Z. (2018). Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).Environmental Science and Pollution Research, 25: 20486–20496.
  • Government of Canada, (2013). Arbuscular Mycorrhizal Fungi and their Symbiosis with Plants. Erişim adresi: https://www.agr.gc.ca/eng/scientific-collaboration-and-research-in-agriculture/agriculture-and-agri-food-research-centres-and-collections/glomeromycota-in-vitro-collection-ginco/arbuscular-mycorrhizal-fungi-and-their-symbiosis-with-plants/?id=1236712919454.
  • Harley, J. L., Smith, S. E. (1983) Mycorrhizal symbiosis. Academic Press, New York.
  • Hirose, E., Neves, P. M. O. J., Zequi, J. A. C. vd. (2001). Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (bals.) vuill. and Metarhizium anisopliae (Metsch.) sorok. Brazilian Archives of Biology and Technology, 44: 419–423.
  • Huang, W. L., He, Y. F., Xiao, J. F., Huang, Y. N., Li, A., He, M. R., ve Wu, K. S. (2019). Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. Environmental Science and Pollution Research, 26 (31): 32128-32136.
  • Ijdo, M., Cranenbrouck, S., ve Declerck, S. (2011). Methods for large‐scale production of AM fungi: past, present, and future. Mycorrhiza, 21: 1–16.
  • Isaac, S. (1992). Fungal Plant Interactions. Chapman and Hall, London, UK, p.418.
  • Jaihan, P., Sangdee, K., ve Sangdee, A. (2016). Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. European Journal of Plant Pathology, 146: 551–564.
  • Jungle Dragon, (2019). https://www.jungledragon.com/image/69157/dead_razor_grinder_cicada_with_a_fungus_growing_on_it.html. (Erişim tarihi: 19.01.2021)
  • Kafaei, R., Arfaeinia, H., Savari, A., Mahmoodi, M., Rezaei, M., Rayani, M., Sorial, G.A., Fattahi, N., ve Ramavandi, B. (2019). Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere, 240, DOI: 10.1016/j.chemosphere.2019.124983.
  • Khan, S., Guo, L., Maimaiti, Y., vd. (2012). Entomopathogenic fungi as microbial biocontrol agent. Molecular Plant Breeding, 3(7).
  • Kotan, R. (2020). Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. Sayfa: 158.
  • Kouassi, M., Coderre, D., ve Todorova, S. I. (2003). Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). Journal of Applied Entomology, 127: 421–426.
  • Krassilstschik, J. (1888). La production industrielle des parasites ve´ge´taux pour la destruction des insectes nuisibles. Bulletin Biologique de la France et de la Belgique 19: 461–472.
  • Labroots, (2017). https://www.labroots.com/trending/microbiology/5707/insects-beware-fungi-mean-business. (Erişim tarihi: 19.01.2021).
  • LeConte, J. L. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10-22.
  • Litwin, A., Nowak, M., ve Różalska, S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology, 1-20.
  • Lovett, B., ve Leger, R. J. S. (2017). The insect pathogens. Microbiology Spectrum, 5: 1–19.
  • Maina, U. M., Galadima, I. B., Gambo, F. M., ve Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6 (1), 27-32.
  • Malik, R. J., Dixon, M. H., ve Bever, J. D. (2016). Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biological control, 103: 46–53.
  • Marschner, H., ve Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159: 89-102.
  • Millner, P. D. (1991). Charectarization and use of Vesicular Arbuscular Mycorrhizae in Agricultural Production Systems. The Rizosphere and Plant Growth (Editors: Keister, D.L. and Cregan P.B.). Kluwer Academic Publishers, Netherlands, 335-342.
  • Mohan, V., Nivea, R., ve Menon, S. (2015). Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi, Journal of Artificial Intelligence Research, 3: 408–412.
  • Moore, D., Douro‐Kpindou, O. K., Jenkins, N. E., ve Lomer, C. J. (1996). Effects of moisture content and temperature on storage of Metarhizium flavoviride conidia. Biocontrol Science and Technology, 6, 51–62.
  • Nair, A., Kolet, S. P., Thulasiram, H. V., ve Bhargava, S. (2014). Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biology, 17 (3): 625–663.
  • Nassimi, Z., ve Taheri, P. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Science and Technology, 27: 1–16.
  • Neves, P. M. O. J., Hirose, E., Tchujo, P. T., ve Moino, A. (2001). Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotropical Entomology, 30: 263–268.
  • Ortaş, İ. (1997). Mikoriza nedir? TÜBİTAK Dergisi Şubat 1997 sayı: 351 Ankara.
  • Pasteur, L. (1874). Observations (au sujet des conclusions de M. Dumas) relatives au phylloxera C. R. Hebd. Seances Acad. Sci., 79, 1233-1234.
  • Pell, J. K., Eilenberg, J., Hajek, A. E., ve Steinkraus, D. C. (2001). Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153.
  • Peterson, R. L., Massicotte, H. B., ve Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. Ottawa, ON, Canada: NRC Research Press.
  • Pfeiffer, C. M., ve Bloss, H. E. (1988). Growth and nutrition of guayule (Parthenium argentatum) in saline soil as influenced by vesicular–arbuscular mycorrhiza and phosphorus fertilization. New Phytologist, 108, 315-321.
  • Read, D. J., ve Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157: 475–492.
  • Reddy, D. S., Reddy, M., ve Pushpalatha, M. (2018). Interaction of fungicides with bio-control agents. Journal of Entomology and Zoology, 3: 2098–2104.
  • Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., vd. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26: 1574–1585.
  • Ruiz Lazano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress. New Phytologist, 157(1): 135-143.
  • Schouteden, N., De Waele, D., Panis, B., ve Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Frontiers in Microbiology, 6: 1280.
  • Shah, F. A, Ansari, M. A., Watkins, J., vd. (2009). Influence of commercial fungicides on the germination, growth and virulence of four species of entomopathogenic fungi. Biocontrol Science and Technology, 19: 743–753.
  • Shim, Y. K., Mlynarek, S. P., ve van Wijngaarden, E. (2009). Parental Exposure to Pesticides and Childhood brain cancer: US Atlantic Coast Childhood Brain Cancer Study. Environmental Health Perspectives, 117 (6): 1002-1006.
  • Sivakumar, T, Jiji, T., ve Naseema, A. (2019). Effect of pesticides used in banana agro-system on entomopathogenic fungus, Metarhizium majus Bisch, Rehner and Humber. International Journal of Tropical Insect Science, 1-9.
  • Smith, S. E., ve Read, D. J. (1996). Mycorrhizal symbiosis, Academic press, p. 1-611.
  • Smith, S. E., ve Read D. J. (2008). Mycorrhizal symbiosis (3rd edn). Elsevier-Academic Press, London,UK, pp. 787.
  • Subbanna, A. R. N. S., Stanley, J., Venkateswarlu. V., vd. (2019). Toxicological prospects on joint action of microbial insecticides and chemical pesticides. In: Khan MA, Ahmad W (eds) Microbes for sustainable insect pest management. Springer, Cham, pp 317–340.
  • Szewczyk, R., Kuśmierska, A., ve Bernat, P. (2018). Ametryn removal by Metarhizium brunneum: biodegradation pathway proposal and metabolic background revealed. Chemosphere, 190: 174–183.
  • Tahat, M., Kamaruzaman, S., ve Othman, R. (2010). Mycorrhizal fungi as a biocontrol agent. Plant Pathology Journal, 9: 198–207.
  • The Ground up (2018). Mycorrhizal Fungi. Erişim adresi: https://thegroundup.com/blog/tag/Mycorrhizal+Fungi. (Erişim tarihi: 19.01.2021)
  • Tiryaki, O., Canhilal, R., ve Horuz, S. (2010). Tarım ilaçları kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26 (2): 154-169.
  • Tiryaki, O. (2016). Türkiye’de yapılan pestisit kalıntı analiz ve çalışmalar. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 32 (1): 72-82.
  • Tkaczuk, C., Harasimiuk, M., Król, A., ve Beres, P. K. (2015). The effect of selected pesticides on the growth of entomopathogenic fungi Hirsutella nodulosa and Beauveria bassiana. Journal of Ecological Engineering, 16: 177–183.
  • Todorova, S. I., Coderre, D., Duchesne, R. M., ve Côté, J. C. (1998). Compatibility of Beauveria bassiana with selected fungicides and herbicides. Environmental Entomology, 27: 427–433.
  • Tozlu, E., Kotan, R. ve Tozlu, G. (2017). The investigation of Beauveria bassiana (Ascomycota: Hypocreales) as a biocontrol agent of rose-stem sawfly, Syrista parreyssii (Spinola, 1843) (Hymenoptera: Symphyta; Cephidae) larvae. Fresenius Environmental Bulletin, 26 (12): 7091-7100.
  • Tozlu, E., Tekiner, N., Tozlu, G., Kotan, R., Çalmaşur, Ö., Göktürk, T. , et al. (2018a). Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae)'nin Entomopatojen Fungus ve Bakterilerle Biyolojik Mücadelesinin Araştırılması. Türkiye III. Orman Entomolojisi ve Patolojisi Sempozyumu, Artvin, Türkiye, 10-12 Mayıs 2018, ss.43-43.
  • Tozlu, E., Tekiner, N. ve Kotan R. (2018b). Screening of Trichoderma harzianum Rifai (1969) isolates of domestic plant origin against different fungal plant pathogens for use as biopesticide. Fresenius Environmental Bulletin, 27 (6): 4232-4238.
  • Tuli, H. S., Sandhu, S. S. ve Sharma, A. K. (2014). Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech, 4, 1–12.
  • TÜİK, (2019). Türkiye’de Pestisit Kullanım Miktarları. http://www.tuik.gov.tr (Erişim tarihi: 17.04.2019).
  • Uygun, N. (2002). Zararlılara karşı biyolojik mücadelede gelişmeler, s. 23-31. Türkiye 5. Biyolojik Mücadele Kongresi, Eylül 4-7, 2002, Erzurum.
  • Valero-Jiménez, C. A., Wiegers, H., Zwaan, B. J., Koenraadt, C. J. M., ve van Kanc., J. A. L. (2016). Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 133: 41-49.
  • van der Heijden, M.G., Martin, F.M., Selosse, M.A., ve Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205 (4), 1406-1423.
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., ... ve Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal ecology, 2(4), 149-159.
  • Vos, C. M., Yang, Y., De Coninck, B., ve Cammue, B. P. A. (2014). Fungal (-like) biocontrol organisms in tomato disease control. Biological control, 74: 65–81.
  • Vosátka, M., Látr, A., Gianinazzi, S., ve Albrechtová, J. (2012). Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis, 58: 29–37.
  • Wikipedia, (2021a). https://en.wikipedia.org/wiki/Entomopathogenic_fungus. (Erişim tarihi: 19.01.2021)
  • Wikipedia, (2021b). https://en.wikipedia.org/wiki/Metarhizium_anisopliae. (Erişim tarihi: 19.01.2021)
  • Wu, S., Kostromytska, O. S., Goble, T., vd. (2020). Compatibility of a microsclerotial granular formulation of the entomopathogenic fungus Metarhizium brunneum with fungicides. Biocontrol, 9: 113–123.
  • Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xie, X. Q., Shang, Y., St Leger, R. J., Zhao, G. P., Wang, C., vd. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483.
  • Zheng, P., Xia, Y. L., Xiao, G. H., Xiong, C. H., Hu, X., Zhang, S. W., Zheng, H. J., Huang, Y., Zhou, Y., Wang, S. Y., vd. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology, 12.

Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması

Year 2021, Volume 3, Issue 1, 167 - 191, 15.07.2021
https://doi.org/10.47898/ijeased.849817

Abstract

Funguslar, biyolojik mücadele çalışmalarında kullanılan biyolojik etmenler içerisinde önemli bir grubu oluşturmaktadır. Bu derlemede; biyolojik mücadelede kullanılan entomopatojenik fungusların zararlı böcek popülasyonlarının doğal dengesinin sağlanmasında ve mikorizal fungusların, bitki, toprak ve bitki patojenleri ile arasındaki etkileşimlerinin biyolojik mücadeledeki önemlerinden bahsedilmiştir. Ayrıca entomopatojenik fungusların ve mikorizal fungusların biyolojik mücadeledeki etki mekanizmaları ve bitki gelişimine katkıları hakkında bilgiler verilmiştir. Entomopatojen fungusların ve mikorizaların tarımda kimyasallara karşı gerek bitki koruma gerekse de bitki beslemede başarılı bir şekilde kullanılabileceğinin özellikle vurgulanması amaçlanmıştır. Bu konuda Türkiye’de yapılan çalışmaların biraz daha ileriye götürülmesi noktasında taşıyıcı formülasyon çalışmalarına ağırlık verilmesi ve ruhsatlandırma ile ilgili yönetmeliklerin bilimsel çalışmalara göre güncellenmesi çok faydalı olacaktır.

References

  • Agrios, G. N. (2005). Plant pathology. Academic Press.
  • Alamy, (2012). https://www.alamy.com/stock-photo-development-of-entomopathogenic-fungus-verticillium-lecanii-on-aphid-49319046.html (Erişim tarihi: 19.01.2021)
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
  • Ali S., Huang Z., ve Ren S. (2013). Effect of fungicides on growth, germination and cuticle-degrading enzyme production by Lecanicillium muscarium. Biocontrol Science and Technology, 23: 711–723.
  • Amutha, M., Gulsar Banu, J., Surulivelu, T., ve Gopalakrishnan, N. (2010). Effect of commonly used insecticides on the growth of white Muscardine fungus, Beauveria bassiana under laboratory conditions. Journal of Biopesticides, 3:143–146.
  • Anonim, (2015). Bitki Koruma Ürünleri ve Pestisit Kalıntıları. TC. Gıda Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Ezgi Ofset, ISBN: 978-605-9175-16-6.
  • Asi, M. R., Bashir, M. H., Afzal, M. vd. (2010). Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan Journal of Botany, 42: 4207–4214.
  • Audoin, V. (1837). Nouvelles expériences sur la nature de la maladie contagieuse qui attaque les vers à soie et qu'on désigne sous le nom de Muscardine. Ann. Sci. Nat., 8, 257-270.
  • Ayyıldız, N., Emekci, M., ve Ferizli, A. G. (2018). Türkiye’de pestisitlerin ruhsatlandırılmasının tarihsel değişimi ve gelişimi üzerine değerlendirmeler. Türkiye Entomoloji Bülteni, 8(1-2): 35-50.
  • Avery, P. B., Pick, D. A., Aristizábal, L. F., vd. (2013). Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) blastospores with agricultural chemicals used for management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 4: 694–711.
  • Bagga, S., Hu, G., Screen, S. E, ve Leger, R. J. S. (2004). Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene, 324: 159–169.
  • Barra-Bucarei, L., Iglesias, A. F., ve Torres, C. P. (2019). Entomopathogenic Fungi. In Natural Enemies of Insect Pests in Neotropical Agroecosystems (pp. 123-136). Springer, Cham.
  • Boruta, T. (2018). Uncovering the repertoire of fungal secondary metabolites: From Fleming’s laboratory to the International Space Station. Bioengineered, 9 (1): 12–16.
  • Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11 (1): 21-32.
  • Butt, T. M., Jackson, C., ve Magan, N. (2001). Fungi as Biocontrol Agents, Progress, Problems and Potential, CABI Publishing, CAB International.
  • Cantürk, Z. (2015). Aspergillus ve Penicillium cinslerine ait sekonder metabolitler ve sınıflandırılması. Elektronik Mikrobiyoloji Dergisi TR, 13 (2): 1-8.
  • Castro, T., Mayerhofer, J., Enkerli, J., Eilenberg, J., Meyling, N. V., de Andrade Moral, R., ... ve Delalibera Jr, I. (2016). Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agriculture, Ecosystems & Environment, 233, 361-369.
  • Ceballos, I., Ruiz, M., Fernandez, C., Pena, R., Rodriguez, A., ve Sanders, I. R. (2013). The in vitro mass produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop Cassava. PLoS ONE, 8: e70633.
  • Celar, F. A, ve Kos, K. (2016). Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest Management Science, 72:2110–2117.
  • Dağ, S. (2000). Türkiye'de Tarım İlaçları Endüstrisi ve Geleceği, V. Türkiye Ziraat Mühendisliği Teknik Kongresi Bildirileri 2. Cilt, TMMOB Ziraat Mühendisleri Odası, Ankara, s. 933-958, 17-21 Ocak 2000. 5.
  • D’Alessandro, C. P., Padin, S., Urrutia, M. I., ve López Lastra, C. C. (2011). Interaction of fungicides with the entomopathogenic fungus Isaria fumosorosea. Biocontrol Science and Technology, 21: 189–197.
  • Dara, S. K. (2017). Entomopathogenic microorganisms: modes of action and role in IPM. Agriculture and Natural Blogs, University of California, 7p.
  • Davis, J. R., Brownson, R. C., Garcia, R., Bentz, B. J., ve Turner, A. (1993). Family pesticide use and childhood brain cancer. Archives of Environmental Contamination and Toxicology, 24 (1): 87-92.
  • Dehne, H. W., ve Schanbeck, F. (1979). Untersuchungen zum Einfluss der Endotrophen Mykorrhiza auf Pflanzenkrankheiten. II. Phenolstoffwechsel und Lignifizierung, Phytopathology, 95, 214-216.
  • Delen N., Durmuşoğlu E., Güncan A., Güngör N., Turgut C., ve Burçak A. (2005). Türkiye’de Pestisit Kullanımı, Kalıntı ve Organizmalarda Duyarlılık Azalışı Sorunları, VI. Türkiye Ziraat Mühendisliği Teknik Kongresi.
  • Delen, N., Tiryaki, O., Türkseven, S., ve Temur, C. (2015). Türkiye’de pestisit kullanımı kalıntı ve dayanıklılık sorunları, çözüm önerileri ss, 758-778. Türkiye Ziraat Müh. VIII. Teknik Kongresi, 12-16 Ocak 2015, Türkiye.
  • Demirci, F., Muştu, M., Kaydan, M. B., ve Ülgentürk, S. (2011). Effects of some fungicides on Isariafarinosa, and in vitro growth and infection rate on Planococcus citri. Phytoparasitica, 39: 353–360.
  • Doğan, Z., Arslan, S., ve Berkman, A. N. (2015). Türkiye’de Tarım Sektörünün İktisadi Gelişimi ve Sorunları. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8 (1): 29-41. ISSN: 2148-5801.
  • E-Journal of Entomology and Biologicals (2017). https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=24119. (Erişim tarihi: 19.01.2021)
  • Fiedler, Z., ve Sosnowska, D. (2017). Side effects of fungicides and insecticides on entomopathogenic fungi in vitro. Journal of Plant Protection Research, 57: 355–360.
  • Forestry images, (2018). https://www.forestryimages.org/browse/detail.cfm?imgnum=5368217. (Erişim tarihi: 19.01.2021)
  • Forlani, L., Juárez, M. P., Lavarías, S., ve Pedrini, N. (2014). Toxicological and biochemical response of the entomopathogenic fungus Beauveria bassiana after exposure to deltamethrin. Pest Management Science, 70: 751–756.
  • Gelernter, W. D., ve Lomer, C. J. (2000). Success in biological control of above-ground insects by pathogens. In: Gurr G, Wratten S (eds) Biological control: measures of success. Kluwer Academic, Dordrecht, The Netherlands, pp 297–322.
  • Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., ve Kariman, K. (2017). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117: 147-157.
  • Goettel, M. S., ve Hajek, A. E. (2000). Evaluation of non-target effects of pathogens used for management of arthropods. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Publishing, Wallingford, pp 81–97.
  • Gola, D., Malik, A., Namburath, M., ve Ahammad, S. Z. (2018). Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).Environmental Science and Pollution Research, 25: 20486–20496.
  • Government of Canada, (2013). Arbuscular Mycorrhizal Fungi and their Symbiosis with Plants. Erişim adresi: https://www.agr.gc.ca/eng/scientific-collaboration-and-research-in-agriculture/agriculture-and-agri-food-research-centres-and-collections/glomeromycota-in-vitro-collection-ginco/arbuscular-mycorrhizal-fungi-and-their-symbiosis-with-plants/?id=1236712919454.
  • Harley, J. L., Smith, S. E. (1983) Mycorrhizal symbiosis. Academic Press, New York.
  • Hirose, E., Neves, P. M. O. J., Zequi, J. A. C. vd. (2001). Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (bals.) vuill. and Metarhizium anisopliae (Metsch.) sorok. Brazilian Archives of Biology and Technology, 44: 419–423.
  • Huang, W. L., He, Y. F., Xiao, J. F., Huang, Y. N., Li, A., He, M. R., ve Wu, K. S. (2019). Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. Environmental Science and Pollution Research, 26 (31): 32128-32136.
  • Ijdo, M., Cranenbrouck, S., ve Declerck, S. (2011). Methods for large‐scale production of AM fungi: past, present, and future. Mycorrhiza, 21: 1–16.
  • Isaac, S. (1992). Fungal Plant Interactions. Chapman and Hall, London, UK, p.418.
  • Jaihan, P., Sangdee, K., ve Sangdee, A. (2016). Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. European Journal of Plant Pathology, 146: 551–564.
  • Jungle Dragon, (2019). https://www.jungledragon.com/image/69157/dead_razor_grinder_cicada_with_a_fungus_growing_on_it.html. (Erişim tarihi: 19.01.2021)
  • Kafaei, R., Arfaeinia, H., Savari, A., Mahmoodi, M., Rezaei, M., Rayani, M., Sorial, G.A., Fattahi, N., ve Ramavandi, B. (2019). Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere, 240, DOI: 10.1016/j.chemosphere.2019.124983.
  • Khan, S., Guo, L., Maimaiti, Y., vd. (2012). Entomopathogenic fungi as microbial biocontrol agent. Molecular Plant Breeding, 3(7).
  • Kotan, R. (2020). Tarımda Biyolojik Çözümler. Harman Yayıncılık, İstanbul, ISBN: 978-605-68060-4-9. Haziran 2020. Sayfa: 158.
  • Kouassi, M., Coderre, D., ve Todorova, S. I. (2003). Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). Journal of Applied Entomology, 127: 421–426.
  • Krassilstschik, J. (1888). La production industrielle des parasites ve´ge´taux pour la destruction des insectes nuisibles. Bulletin Biologique de la France et de la Belgique 19: 461–472.
  • Labroots, (2017). https://www.labroots.com/trending/microbiology/5707/insects-beware-fungi-mean-business. (Erişim tarihi: 19.01.2021).
  • LeConte, J. L. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10-22.
  • Litwin, A., Nowak, M., ve Różalska, S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology, 1-20.
  • Lovett, B., ve Leger, R. J. S. (2017). The insect pathogens. Microbiology Spectrum, 5: 1–19.
  • Maina, U. M., Galadima, I. B., Gambo, F. M., ve Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6 (1), 27-32.
  • Malik, R. J., Dixon, M. H., ve Bever, J. D. (2016). Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biological control, 103: 46–53.
  • Marschner, H., ve Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159: 89-102.
  • Millner, P. D. (1991). Charectarization and use of Vesicular Arbuscular Mycorrhizae in Agricultural Production Systems. The Rizosphere and Plant Growth (Editors: Keister, D.L. and Cregan P.B.). Kluwer Academic Publishers, Netherlands, 335-342.
  • Mohan, V., Nivea, R., ve Menon, S. (2015). Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi, Journal of Artificial Intelligence Research, 3: 408–412.
  • Moore, D., Douro‐Kpindou, O. K., Jenkins, N. E., ve Lomer, C. J. (1996). Effects of moisture content and temperature on storage of Metarhizium flavoviride conidia. Biocontrol Science and Technology, 6, 51–62.
  • Nair, A., Kolet, S. P., Thulasiram, H. V., ve Bhargava, S. (2014). Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biology, 17 (3): 625–663.
  • Nassimi, Z., ve Taheri, P. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Science and Technology, 27: 1–16.
  • Neves, P. M. O. J., Hirose, E., Tchujo, P. T., ve Moino, A. (2001). Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotropical Entomology, 30: 263–268.
  • Ortaş, İ. (1997). Mikoriza nedir? TÜBİTAK Dergisi Şubat 1997 sayı: 351 Ankara.
  • Pasteur, L. (1874). Observations (au sujet des conclusions de M. Dumas) relatives au phylloxera C. R. Hebd. Seances Acad. Sci., 79, 1233-1234.
  • Pell, J. K., Eilenberg, J., Hajek, A. E., ve Steinkraus, D. C. (2001). Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153.
  • Peterson, R. L., Massicotte, H. B., ve Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. Ottawa, ON, Canada: NRC Research Press.
  • Pfeiffer, C. M., ve Bloss, H. E. (1988). Growth and nutrition of guayule (Parthenium argentatum) in saline soil as influenced by vesicular–arbuscular mycorrhiza and phosphorus fertilization. New Phytologist, 108, 315-321.
  • Read, D. J., ve Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157: 475–492.
  • Reddy, D. S., Reddy, M., ve Pushpalatha, M. (2018). Interaction of fungicides with bio-control agents. Journal of Entomology and Zoology, 3: 2098–2104.
  • Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., vd. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26: 1574–1585.
  • Ruiz Lazano, J. M. (2003). Antioxidant activities in mycorrhizal soybean plants under drought stress. New Phytologist, 157(1): 135-143.
  • Schouteden, N., De Waele, D., Panis, B., ve Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Frontiers in Microbiology, 6: 1280.
  • Shah, F. A, Ansari, M. A., Watkins, J., vd. (2009). Influence of commercial fungicides on the germination, growth and virulence of four species of entomopathogenic fungi. Biocontrol Science and Technology, 19: 743–753.
  • Shim, Y. K., Mlynarek, S. P., ve van Wijngaarden, E. (2009). Parental Exposure to Pesticides and Childhood brain cancer: US Atlantic Coast Childhood Brain Cancer Study. Environmental Health Perspectives, 117 (6): 1002-1006.
  • Sivakumar, T, Jiji, T., ve Naseema, A. (2019). Effect of pesticides used in banana agro-system on entomopathogenic fungus, Metarhizium majus Bisch, Rehner and Humber. International Journal of Tropical Insect Science, 1-9.
  • Smith, S. E., ve Read, D. J. (1996). Mycorrhizal symbiosis, Academic press, p. 1-611.
  • Smith, S. E., ve Read D. J. (2008). Mycorrhizal symbiosis (3rd edn). Elsevier-Academic Press, London,UK, pp. 787.
  • Subbanna, A. R. N. S., Stanley, J., Venkateswarlu. V., vd. (2019). Toxicological prospects on joint action of microbial insecticides and chemical pesticides. In: Khan MA, Ahmad W (eds) Microbes for sustainable insect pest management. Springer, Cham, pp 317–340.
  • Szewczyk, R., Kuśmierska, A., ve Bernat, P. (2018). Ametryn removal by Metarhizium brunneum: biodegradation pathway proposal and metabolic background revealed. Chemosphere, 190: 174–183.
  • Tahat, M., Kamaruzaman, S., ve Othman, R. (2010). Mycorrhizal fungi as a biocontrol agent. Plant Pathology Journal, 9: 198–207.
  • The Ground up (2018). Mycorrhizal Fungi. Erişim adresi: https://thegroundup.com/blog/tag/Mycorrhizal+Fungi. (Erişim tarihi: 19.01.2021)
  • Tiryaki, O., Canhilal, R., ve Horuz, S. (2010). Tarım ilaçları kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26 (2): 154-169.
  • Tiryaki, O. (2016). Türkiye’de yapılan pestisit kalıntı analiz ve çalışmalar. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 32 (1): 72-82.
  • Tkaczuk, C., Harasimiuk, M., Król, A., ve Beres, P. K. (2015). The effect of selected pesticides on the growth of entomopathogenic fungi Hirsutella nodulosa and Beauveria bassiana. Journal of Ecological Engineering, 16: 177–183.
  • Todorova, S. I., Coderre, D., Duchesne, R. M., ve Côté, J. C. (1998). Compatibility of Beauveria bassiana with selected fungicides and herbicides. Environmental Entomology, 27: 427–433.
  • Tozlu, E., Kotan, R. ve Tozlu, G. (2017). The investigation of Beauveria bassiana (Ascomycota: Hypocreales) as a biocontrol agent of rose-stem sawfly, Syrista parreyssii (Spinola, 1843) (Hymenoptera: Symphyta; Cephidae) larvae. Fresenius Environmental Bulletin, 26 (12): 7091-7100.
  • Tozlu, E., Tekiner, N., Tozlu, G., Kotan, R., Çalmaşur, Ö., Göktürk, T. , et al. (2018a). Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae)'nin Entomopatojen Fungus ve Bakterilerle Biyolojik Mücadelesinin Araştırılması. Türkiye III. Orman Entomolojisi ve Patolojisi Sempozyumu, Artvin, Türkiye, 10-12 Mayıs 2018, ss.43-43.
  • Tozlu, E., Tekiner, N. ve Kotan R. (2018b). Screening of Trichoderma harzianum Rifai (1969) isolates of domestic plant origin against different fungal plant pathogens for use as biopesticide. Fresenius Environmental Bulletin, 27 (6): 4232-4238.
  • Tuli, H. S., Sandhu, S. S. ve Sharma, A. K. (2014). Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech, 4, 1–12.
  • TÜİK, (2019). Türkiye’de Pestisit Kullanım Miktarları. http://www.tuik.gov.tr (Erişim tarihi: 17.04.2019).
  • Uygun, N. (2002). Zararlılara karşı biyolojik mücadelede gelişmeler, s. 23-31. Türkiye 5. Biyolojik Mücadele Kongresi, Eylül 4-7, 2002, Erzurum.
  • Valero-Jiménez, C. A., Wiegers, H., Zwaan, B. J., Koenraadt, C. J. M., ve van Kanc., J. A. L. (2016). Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 133: 41-49.
  • van der Heijden, M.G., Martin, F.M., Selosse, M.A., ve Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205 (4), 1406-1423.
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., ... ve Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal ecology, 2(4), 149-159.
  • Vos, C. M., Yang, Y., De Coninck, B., ve Cammue, B. P. A. (2014). Fungal (-like) biocontrol organisms in tomato disease control. Biological control, 74: 65–81.
  • Vosátka, M., Látr, A., Gianinazzi, S., ve Albrechtová, J. (2012). Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis, 58: 29–37.
  • Wikipedia, (2021a). https://en.wikipedia.org/wiki/Entomopathogenic_fungus. (Erişim tarihi: 19.01.2021)
  • Wikipedia, (2021b). https://en.wikipedia.org/wiki/Metarhizium_anisopliae. (Erişim tarihi: 19.01.2021)
  • Wu, S., Kostromytska, O. S., Goble, T., vd. (2020). Compatibility of a microsclerotial granular formulation of the entomopathogenic fungus Metarhizium brunneum with fungicides. Biocontrol, 9: 113–123.
  • Xiao, G., Ying, S. H., Zheng, P., Wang, Z. L., Zhang, S., Xie, X. Q., Shang, Y., St Leger, R. J., Zhao, G. P., Wang, C., vd. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483.
  • Zheng, P., Xia, Y. L., Xiao, G. H., Xiong, C. H., Hu, X., Zhang, S. W., Zheng, H. J., Huang, Y., Zhou, Y., Wang, S. Y., vd. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology, 12.

Details

Primary Language Turkish
Subjects Engineering, Agricultural, Engineering
Published Date Temmuz 2021
Journal Section Research Articles
Authors

Meltem AVAN (Primary Author)
ANKARA UNIVERSITY, FACULTY OF AGRICULTURE
0000-0001-5308-9414
Türkiye


Recep KOTAN
ATATÜRK ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ
0000-0001-6493-8936
Türkiye

Publication Date July 15, 2021
Application Date December 29, 2020
Acceptance Date January 31, 2021
Published in Issue Year 2021, Volume 3, Issue 1

Cite

Bibtex @review { ijeased849817, journal = {Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi}, issn = {2667-8764}, eissn = {2667-8764}, address = {Fırat Üniversitesi, Metalurji ve Malzeme Mühendisliği Bölümü, 23119, Elazığ / Türkiye}, publisher = {Selim TAŞKAYA}, year = {2021}, volume = {3}, pages = {167 - 191}, doi = {10.47898/ijeased.849817}, title = {Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması}, key = {cite}, author = {Avan, Meltem and Kotan, Recep} }
APA Avan, M. & Kotan, R. (2021). Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması . Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi , 3 (1) , 167-191 . DOI: 10.47898/ijeased.849817
MLA Avan, M. , Kotan, R. "Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması" . Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 3 (2021 ): 167-191 <https://dergipark.org.tr/en/pub/ijeased/issue/58420/849817>
Chicago Avan, M. , Kotan, R. "Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması". Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 3 (2021 ): 167-191
RIS TY - JOUR T1 - Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması AU - Meltem Avan , Recep Kotan Y1 - 2021 PY - 2021 N1 - doi: 10.47898/ijeased.849817 DO - 10.47898/ijeased.849817 T2 - Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi JF - Journal JO - JOR SP - 167 EP - 191 VL - 3 IS - 1 SN - 2667-8764-2667-8764 M3 - doi: 10.47898/ijeased.849817 UR - https://doi.org/10.47898/ijeased.849817 Y2 - 2021 ER -
EndNote %0 International Journal of Eastern Anatolia Science Engineering and Design Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması %A Meltem Avan , Recep Kotan %T Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması %D 2021 %J Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi %P 2667-8764-2667-8764 %V 3 %N 1 %R doi: 10.47898/ijeased.849817 %U 10.47898/ijeased.849817
ISNAD Avan, Meltem , Kotan, Recep . "Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması". Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 3 / 1 (July 2021): 167-191 . https://doi.org/10.47898/ijeased.849817
AMA Avan M. , Kotan R. Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması. IJEASED ( ISSN: 2667-8764 ). 2021; 3(1): 167-191.
Vancouver Avan M. , Kotan R. Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi. 2021; 3(1): 167-191.
IEEE M. Avan and R. Kotan , "Fungusların Mikrobiyal Gübre veya Biyopestisit Olarak Tarımda Kullanılması", Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, vol. 3, no. 1, pp. 167-191, Jul. 2021, doi:10.47898/ijeased.849817