Research Article
BibTex RIS Cite

Analysis of the Anti-Reflection Coated Eyeglass Used in Turkey

Year 2021, Volume: 3 Issue: 1, 157 - 166, 15.07.2021
https://doi.org/10.47898/ijeased.865312

Abstract

Worldwide, organic anti-reflective (AR) coated glasses constitute one of the largest areas in the industrial market. In our study, the analysis of the stages of anti-reflective glasses produced in our country and offered to eyeglass wearers was examined. Among the anti-reflective coating stages, the characterizations of hard coating, single surface and double surface coated glasses were investigated. High resolution Scanning Electron Microscope device (FESEM) was taken for the surface quality of the AR coatings of glasses, and absorption-transmittance measurements were taken for the optical quality of the glasses. The structure of the glass was analyzed with the X-ray diffraction device (XRD). Maximum light transmittance reaches 98.54% at 464 nm in double-sided AR coated glasses. Our study with the analysis of eyeglasses, which often have an important place in health and commercial areas in our country and in the world, will constitute an important reference for the manufacturer and consumer and will contribute to further studies.

Thanks

This study was produced from the PhD thesis, and I would like to thank Prof. Dr. Suat PAT and Prof. Dr. Müjdat ÇAĞLAR for opportunity to take measurements of my samples.

References

  • Bhootra, A.K. , (2009). Ophthalmic Lenses. New Delhi, India, Jaypee Brothers Medical Publishers.
  • Buyukyıldız, H.Z., ( 2010). Spectacle lenses, lens materials and personalized specta-cle lenses. Turkish Journal of Ophthalmology, 41(1), 26-34.
  • Camargo, K. C., Michels, A. F., Rodembusch, F. S., & Horowitz, F., (2012). Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chemical Communications, 48(41), 4992-4994. doi: 10.1039/c2cc30456b
  • Fardo, F. M., Ribeiro, R. S., Strauss, J. A., Nardi, J., Ferreira, L. C., Schmokel, G., . . . Horowitz, F., (2020). Double layer SiO2-TiO2 sol-gel thin films on glass for antireflection, antifogging, and UV recoverable self-cleaning. Applied Optics, 59(25), 7720-7725. doi: 10.1364/Ao.397484
  • Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., . . . Burd, Vision Loss Expert Grp Global, (2017). Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Global Health, 5(12), E1221-E1234. doi: 10.1016/S2214-109x(17)30393-5
  • Gifford, K. L., Richdale, K., Kang, P., Aller, T. A., Lam, C. S., Liu, Y. M., . . . Sankaridurg, P., (2019). IMI - Clinical Management Guidelines Report. Investigative Ophthalmology & Visual Science, 60(3), M184-M203. doi: 10.1167/iovs.18-25977
  • Mahadik, D. B., Lakshmi, R. V., & Barshilia, H. C., (2015). High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications. Solar Energy Materials and Solar Cells, 140, 61-68. doi: 10.1016/j.solmat.2015.03.023
  • Mendibide, C., Steyer, P., Esnouf, C., Goudeau, P., Thiaudiere, D., Gailhanou, M., & Fontaine, J., (2005). X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel. Surface & Coatings Technology, 200(1-4), 165-169. doi: 10.1016/j.surfcoat.2005.02.081
  • Min, W. L., Jiang, B., & Jiang, P., (2008). Bioinspired Self-Cleaning Antireflection Coatings. Advanced Materials, 20(20), 3914-+. doi: 10.1002/adma.200800791
  • Samson, F., (1996). Ophthalmic lens coatings. Surface & Coatings Technology, 81(1), 79-86. doi: Doi 10.1016/0257-8972(95)02532-4
  • Schott. (2005). TIE-35: transmittance of optical glass, Technical Information Advanced Optics. Retrieved from https://www.schott.com/d/advanced_optics/5b1f5065-0587-4b3f-8fc7-e508b5348012/1.1/schott-tie-35-transmittance-of-optical-glass-february-2020-row-20022020.pdf
  • Sun, X. Y., Li, L., Xu, X. Z., Song, G. Y., Tu, J. L., Yan, P. Y., . . . Hu, K., (2020). Preparation of hydrophobic SiO2/PTFE sol and antireflective coatings for solar glass cover. Optik, 212. doi: Artn 16470410.1016/J.Ijleo.2020.164704
  • Sun, X. Y., Tu, J. L., Zhang, W. N., Li, L., & Hu, K., (2020). A simple route to prepare hydrophobic, high temperature resistant and antireflective coatings. Materials Letters, 277. doi: Artn 12833510.1016/J.Matlet.2020.128335
  • Sun, X. Y., Xu, X. Z., Song, G. Y., Tu, J. L., Li, L., Yan, P. Y., . . . Hu, K., (2020). Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol-gel combined with electron beam evaporation. Optical Materials, 101. doi: Artn 10973910.1016/J.Optmat.2020.109739
  • Tadokoro, N., Jaisupap, K., Sukbumperng, A., Pannakarn, S., Khraikratoke, S., Jamnongpian, P., & Iwata, N., (2012). Investigation of shrinkage and cracking of ophthalmic lens coating by a cycle test of UV radiation and high humidity. Thin Solid Films, 520(12), 4169-4173. doi: 10.1016/j.tsf.2011.04.097
  • Wang, L. K., Xu, Y., Chu, Z. R., Tang, W. W., Qiu, Y. F., Zhao, X. L., . . . Chen, C., (2020). Rapid Coating of Ultraviolet Shielding Colloidal Crystals. Crystals, 10(6). doi: Artn 502 10.3390/Cryst10060502
  • Wu, Q. Y., Tang, Y. H., Chen, X. Y., Ma, C. L., Yao, F., & Liu, L., (2019). Method for evaluating ophthalmic lens based on Eye-Lens-Object optical system. Optics Express, 27(26), 37274-37285. doi: 10.1364/Oe.27.037274
  • Xi, J. Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M. F., Lin, S. Y., . . . Smart, J. A., (2007). Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photonics, 1(3), 176-179. doi: 10.1038/nphoton.2007.26
  • Yao, L., & He, J. H., (2014). Broadband Antireflective Superhydrophilic Thin Films with Outstanding Mechanical Stability on Glass Substrates. Chinese Journal of Chemistry, 32(6), 507-512. doi: 10.1002/cjoc.201400022
  • Yuan, J. J., Yan, S. Y., Xiao, Z. X., & Hu, J. L., (2020). Multifunctional closed-pore silica/titania composite antireflective coatings based on self-assembly process. Materials Chemistry and Physics, 250. doi: ARTN 12302310.1016/j.matchemphys.2020.123023
  • Yuan, J. J., Yan, S. Y., & Zhang, X., (2020). Superhydrophilic antifogging broadband antireflective coatings with worm-like nanostructures fabricated by one dip-coating method and calcination. Applied Surface Science, 506. doi: Artn 14479510.1016/J.Apsusc.2019.144795

Türkiye’de Kullanılan Antirefle Kaplamalı Gözlük Camlarının Analizi

Year 2021, Volume: 3 Issue: 1, 157 - 166, 15.07.2021
https://doi.org/10.47898/ijeased.865312

Abstract

Dünya çapında organik antirefle (AR) kaplamalı camlar, endüstriyel pazarın en büyük alanlarından birini oluşturmaktadır. Çalışmamızda ülkemizde üretilen ve gözlük kullanıcılarına sunulan antirefle kaplamalı camların aşamalarının analizleri incelenmiştir. Antirefle kaplama aşamalarından sert kaplama, tek yüzey ve çift yüzey kaplamalı camların karakterizasyonları incelenmiştir. Camların AR kaplamalarının yüzey kalitesi için yüksek çözünürlüklü Taramalı Elektron Mikroskobu cihazı (FESEM), camların optiksel kalitesi için soğurma-geçirgenlik ölçümleri yapıldı. Camın yapısı X-Işını kırınım cihazı (XRD) ile analiz edildi. Çift tarafı AR kaplı camlarda maksimum ışık geçirgenliği 464 nm’de % 98,54’e ulaşmaktadır. Ülkemizde ve dünyada sıklıkla sağlık ve ticari alanlarda önemli yer tutan gözlük camlarının analizleri ile çalışmamız üretici ve tüketici için önemli bir referans oluşturacak ve daha ileri ki çalışmalara katkı sağlayacaktır.

References

  • Bhootra, A.K. , (2009). Ophthalmic Lenses. New Delhi, India, Jaypee Brothers Medical Publishers.
  • Buyukyıldız, H.Z., ( 2010). Spectacle lenses, lens materials and personalized specta-cle lenses. Turkish Journal of Ophthalmology, 41(1), 26-34.
  • Camargo, K. C., Michels, A. F., Rodembusch, F. S., & Horowitz, F., (2012). Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chemical Communications, 48(41), 4992-4994. doi: 10.1039/c2cc30456b
  • Fardo, F. M., Ribeiro, R. S., Strauss, J. A., Nardi, J., Ferreira, L. C., Schmokel, G., . . . Horowitz, F., (2020). Double layer SiO2-TiO2 sol-gel thin films on glass for antireflection, antifogging, and UV recoverable self-cleaning. Applied Optics, 59(25), 7720-7725. doi: 10.1364/Ao.397484
  • Flaxman, S. R., Bourne, R. R. A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M. V., . . . Burd, Vision Loss Expert Grp Global, (2017). Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Global Health, 5(12), E1221-E1234. doi: 10.1016/S2214-109x(17)30393-5
  • Gifford, K. L., Richdale, K., Kang, P., Aller, T. A., Lam, C. S., Liu, Y. M., . . . Sankaridurg, P., (2019). IMI - Clinical Management Guidelines Report. Investigative Ophthalmology & Visual Science, 60(3), M184-M203. doi: 10.1167/iovs.18-25977
  • Mahadik, D. B., Lakshmi, R. V., & Barshilia, H. C., (2015). High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications. Solar Energy Materials and Solar Cells, 140, 61-68. doi: 10.1016/j.solmat.2015.03.023
  • Mendibide, C., Steyer, P., Esnouf, C., Goudeau, P., Thiaudiere, D., Gailhanou, M., & Fontaine, J., (2005). X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel. Surface & Coatings Technology, 200(1-4), 165-169. doi: 10.1016/j.surfcoat.2005.02.081
  • Min, W. L., Jiang, B., & Jiang, P., (2008). Bioinspired Self-Cleaning Antireflection Coatings. Advanced Materials, 20(20), 3914-+. doi: 10.1002/adma.200800791
  • Samson, F., (1996). Ophthalmic lens coatings. Surface & Coatings Technology, 81(1), 79-86. doi: Doi 10.1016/0257-8972(95)02532-4
  • Schott. (2005). TIE-35: transmittance of optical glass, Technical Information Advanced Optics. Retrieved from https://www.schott.com/d/advanced_optics/5b1f5065-0587-4b3f-8fc7-e508b5348012/1.1/schott-tie-35-transmittance-of-optical-glass-february-2020-row-20022020.pdf
  • Sun, X. Y., Li, L., Xu, X. Z., Song, G. Y., Tu, J. L., Yan, P. Y., . . . Hu, K., (2020). Preparation of hydrophobic SiO2/PTFE sol and antireflective coatings for solar glass cover. Optik, 212. doi: Artn 16470410.1016/J.Ijleo.2020.164704
  • Sun, X. Y., Tu, J. L., Zhang, W. N., Li, L., & Hu, K., (2020). A simple route to prepare hydrophobic, high temperature resistant and antireflective coatings. Materials Letters, 277. doi: Artn 12833510.1016/J.Matlet.2020.128335
  • Sun, X. Y., Xu, X. Z., Song, G. Y., Tu, J. L., Li, L., Yan, P. Y., . . . Hu, K., (2020). Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol-gel combined with electron beam evaporation. Optical Materials, 101. doi: Artn 10973910.1016/J.Optmat.2020.109739
  • Tadokoro, N., Jaisupap, K., Sukbumperng, A., Pannakarn, S., Khraikratoke, S., Jamnongpian, P., & Iwata, N., (2012). Investigation of shrinkage and cracking of ophthalmic lens coating by a cycle test of UV radiation and high humidity. Thin Solid Films, 520(12), 4169-4173. doi: 10.1016/j.tsf.2011.04.097
  • Wang, L. K., Xu, Y., Chu, Z. R., Tang, W. W., Qiu, Y. F., Zhao, X. L., . . . Chen, C., (2020). Rapid Coating of Ultraviolet Shielding Colloidal Crystals. Crystals, 10(6). doi: Artn 502 10.3390/Cryst10060502
  • Wu, Q. Y., Tang, Y. H., Chen, X. Y., Ma, C. L., Yao, F., & Liu, L., (2019). Method for evaluating ophthalmic lens based on Eye-Lens-Object optical system. Optics Express, 27(26), 37274-37285. doi: 10.1364/Oe.27.037274
  • Xi, J. Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M. F., Lin, S. Y., . . . Smart, J. A., (2007). Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photonics, 1(3), 176-179. doi: 10.1038/nphoton.2007.26
  • Yao, L., & He, J. H., (2014). Broadband Antireflective Superhydrophilic Thin Films with Outstanding Mechanical Stability on Glass Substrates. Chinese Journal of Chemistry, 32(6), 507-512. doi: 10.1002/cjoc.201400022
  • Yuan, J. J., Yan, S. Y., Xiao, Z. X., & Hu, J. L., (2020). Multifunctional closed-pore silica/titania composite antireflective coatings based on self-assembly process. Materials Chemistry and Physics, 250. doi: ARTN 12302310.1016/j.matchemphys.2020.123023
  • Yuan, J. J., Yan, S. Y., & Zhang, X., (2020). Superhydrophilic antifogging broadband antireflective coatings with worm-like nanostructures fabricated by one dip-coating method and calcination. Applied Surface Science, 506. doi: Artn 14479510.1016/J.Apsusc.2019.144795
There are 21 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Hülya Kuru Mutlu 0000-0002-6955-5851

Naci Ekem This is me 0000-0003-1286-3818

Publication Date July 15, 2021
Submission Date January 20, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Kuru Mutlu, H., & Ekem, N. (2021). Analysis of the Anti-Reflection Coated Eyeglass Used in Turkey. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 3(1), 157-166. https://doi.org/10.47898/ijeased.865312

Cited By


Reciprocity relations for interference coatings
Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
https://doi.org/10.29235/1561-2430-2023-59-2-158-167