Review
BibTex RIS Cite

Borofen Üretim Teknikleri ve Enerji Uygulamaları

Year 2023, Volume: 5 Issue: 1 - JULY 2023 ISSUE, 126 - 142, 15.07.2023
https://doi.org/10.47898/ijeased.1232358

Abstract

İki boyutlu malzemeler benzersiz fiziksel, kimyasal ve elektriksel özelliklere sahiptir. Borofen üzerine yapılan birçok teorik çalışma, yapısında bulunan boşluklar nedeniyle metaliklik, şeffaflık, iletkenlik ve kimyasal aktivite gibi önemli olası özellikleri ortaya çıkarmıştır. İlk olarak 2015 yılında sentezlenen bu yeni ve heyecan verici 2B malzeme üzerine yapılan deneysel çalışmaların sayısı oldukça azdır. Halihazırdaki çalışmaların çoğunun hala Moleküler Işın Epitaksi (MBE) ve Kimyasal Buhar Biriktirme (CVD) gibi pahalı ve sofistike üretim yöntemlerine odaklandığı görülmüştür. 2 boyutlu malzemelerden ilki olan grafen, yirmi yılı aşkın süredir üzerinde çalışılmasına rağmen, endüstriyel ölçekte üretim yöntemlerinin eksikliği nedeniyle enerji endüstrisinde beklenen etkiyi yapamamıştır. Bu derlemede, teorik arka plandan ziyade borofenin deneysel üretim yöntemleri ve ortaya çıkan yapıları üzerine bir anlatı oluşturulması amaçlanmıştır. Borofen tabakalarını sentezlemek için sıvı faz eksfoliyasyon yönteminin borofen üretimini endüstriyel ölçekte gerçekleştirmek için en umut verici yöntem olabileceği bulunmuştur. Teorik, hesaplamalı ve deneysel çalışmalar, β12 ve χ3 borofen yapılarının kararlı olduğunu ve sonokimyasal eksfoliyasyon yöntemiyle üretilebileceğini göstermiştir. Ayrıca, enerji uygulamalarındaki olası kullanımları ve gelecekteki bazı beklentiler de tartışılmıştır. Bu şekilde üretilen borofen, bataryalarda, süperkapasitörlerde hidrojen evrimi (HER) ve oksijen evrimi (OER) reaksiyonlarında kullanılabileceği öngörülmüştür.

References

  • Albert, B., & Hillebrecht, H. (2009). Boron: Elementary Challenge for Experimenters and Theoreticians. Angewandte Chemie International Edition, 48(46), 8640–8668. https://doi.org/https://doi.org/10.1002/anie.200903246
  • Bhowmik, S., & Govind Rajan, A. (2022). Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. IScience, 25(3), 103832. https://doi.org/https://doi.org/10.1016/j.isci.2022.103832
  • Chen, Y., Yu, G., Chen, W., Liu, Y., Li, G.-D., Zhu, P., Tao, Q., Li, Q., Liu, J., Shen, X., Li, H., Huang, X., Wang, D., Asefa, T., & Zou, X. (2017). Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 139(36), 12370–12373. https://doi.org/10.1021/jacs.7b06337
  • Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/https://doi.org/10.1016/j.mattod.2016.10.002
  • Coleman, J. N. (2013). Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research, 46(1), 14–22. https://doi.org/10.1021/ar300009f
  • Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. https://doi.org/10.1038/NCHEM.2491
  • Gao, M., Li, Q.-Z., Yan, X.-W., & Wang, J. (2017). Prediction of phonon-mediated superconductivity in borophene. Physical Review B, 95(2), 24505. https://doi.org/10.1103/PhysRevB.95.024505
  • Göktuna, S., & Taşaltın, N. (2021). Preparation and characterization of PANI: α borophene electrode for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 134, 114833.
  • Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44–126. https://doi.org/https://doi.org/10.1016/j.pmatsci.2015.02.002
  • Gupta, V., & Miura, N. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4), 1721–1726. https://doi.org/https://doi.org/10.1016/j.electacta.2006.01.074
  • Jiang, H. R., Lu, Z., Wu, M. C., Ciucci, F., & Zhao, T. S. (2016). Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy, 23, 97–104. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.03.013
  • Jiang, J., Wang, X., & Song, Y. (2018). Tunable magnetic and electronic properties in 3d transition-metal adsorbed β12 and χ3 borophene. Computational Materials Science, 153, 10–15. https://doi.org/https://doi.org/10.1016/j.commatsci.2018.06.010
  • Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., Yakobson, B. I., Hersam, M. C., & Guisinger, N. P. (2019). Borophene Synthesis on Au(111). ACS Nano, 13(4), 3816–3822. https://doi.org/10.1021/acsnano.8b09339
  • Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. T. (2018). Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444
  • Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., Li, H., Chen, L., Cheng, P., & Wu, K. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63(5), 282–286. https://doi.org/https://doi.org/10.1016/j.scib.2018.02.006
  • Liang, P., Cao, Y., Tai, B., Zhang, L., Shu, H., Li, F., Chao, D., & Du, X. (2017). Is borophene a suitable anode material for sodium ion battery? Journal of Alloys and Compounds, 704, 152–159. https://doi.org/https://doi.org/10.1016/j.jallcom.2017.02.050
  • Lin, H., Shi, H., Wang, Z., Mu, Y., Li, S., Zhao, J., Guo, J., Yang, B., Wu, Z.-S., & Liu, F. (2021). Scalable Production of Freestanding Few-Layer β12-Borophene Single Crystalline Sheets as Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Nano, 15(11), 17327–17336. https://doi.org/10.1021/acsnano.1c04961
  • Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4
  • Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., Liu, X., Fisher, B. L., Santiago, U., Guest, J. R., Yacaman, M. J., Ponce, A., Oganov, A. R., Hersam, M. C., & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080
  • Mazaheri, A., Javadi, M., & Abdi, Y. (2021). Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS Applied Materials & Interfaces, 13(7), 8844–8850. https://doi.org/10.1021/acsami.0c22580
  • Mortazavi, B., Dianat, A., Rahaman, O., Cuniberti, G., & Rabczuk, T. (2016). Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study. Journal of Power Sources, 329, 456–461. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.08.109
  • Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The Emergence and Evolution of Borophene. Advanced Science, 8(12), 2001801. https://doi.org/https://doi.org/10.1002/advs.202001801
  • Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New Sensation in Flatland. Advanced Materials, 32(34), 2000531. https://doi.org/https://doi.org/10.1002/adma.202000531
  • Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding Borophene and Its Hybrids. Advanced Materials, 31(27), 1900353. https://doi.org/https://doi.org/10.1002/adma.201900353
  • Razaq, A., Bibi, F., Zheng, X., Papadakis, R., Jafri, S. H. M., & Li, H. (2022). Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials, 15(3). https://doi.org/10.3390/ma15031012
  • Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R., & Markovic, N. M. (2016). Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 29, 29–36. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.04.017
  • Tai, G., Hu, T., Zhou, Y., Wang, X., Kong, J., Zeng, T., You, Y., & Wang, Q. (2015). Synthesis of Atomically Thin Boron Films on Copper Foils. Angewandte Chemie International Edition, 54(51), 15473–15477. https://doi.org/https://doi.org/10.1002/anie.201509285
  • Türkmen, T. A., Taşaltın, N., Taşaltın, C., Baytemir, G., & Karakuş, S. (2022). PEDOT: PSS / β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors. Inorganic Chemistry Communications, 139, 109329. https://doi.org/https://doi.org/10.1016/j.inoche.2022.109329
  • Vinogradov, N. A., Lyalin, A., Taketsugu, T., Vinogradov, A. S., & Preobrajenski, A. (2019). Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano, 13(12), 14511–14518. https://doi.org/10.1021/acsnano.9b08296
  • Vogt, P. (2018). Silicene, germanene and other group IV 2D materials. Beilstein Journal of Nanotechnology, 9, 2665–2667. https://doi.org/10.3762/bjnano.9.248
  • Wang, X., Liang, J., You, Q., Zhu, J., Fang, F., Xiang, Y., & Song, J. (2020). Bandgap Engineering of Hydroxy-Functionalized Borophene for Superior Photo-Electrochemical Performance. Angewandte Chemie International Edition, 59(52), 23559–23563. https://doi.org/https://doi.org/10.1002/anie.202010723
  • Wang, X., Wu, R., Tian, P., Yan, Y., Gao, Y., & Xuan, F. (2021). Borophene Nanoribbons via Strain Engineering for the Hydrogen Evolution Reaction: A First-Principles Study. The Journal of Physical Chemistry C, 125(31), 16955–16962. https://doi.org/10.1021/acs.jpcc.1c02770
  • Wu, R., Drozdov, I. K., Eltinge, S., Zahl, P., Ismail-Beigi, S., Božović, I., & Gozar, A. (2019). Large-area single-crystal sheets of borophene on Cu(111) surfaces. NAtuRE NANotEChNoLoGy |, 14. https://doi.org/10.1038/s41565-018-0317-6
  • Xie, Z., Meng, X., Li, X., Liang, W., Huang, W., Chen, K., Chen, J., Xing, C., Qiu, M., Zhang, B., Nie, G., Xie, N., Yan, X., & Zhang, H. (2020). Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research, 2020, 2624617. https://doi.org/10.34133/2020/2624617
  • Xu, M., Zhang, X., Liu, Y., Zhao, X., Liu, Y., Wu, R., & Wang, J. (2020). Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3d Transition Metal Atoms Doped Borophene Nanosheets. ChemPhysChem, 21(24), 2651–2659. https://doi.org/https://doi.org/10.1002/cphc.202000692
  • Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., Lei, Z., & Liu, Z.-H. (2020). Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation †. https://doi.org/10.1039/d0ra03492d
  • Zhang, L., Gong, T., Yu, Z., Dai, H., Yang, Z., Chen, G., Li, J., Pan, R., Wang, H., Guo, Z., Zhang, H., & Fu, X. (2021). Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials, 31(1), 2005471. https://doi.org/https://doi.org/10.1002/adfm.202005471
  • Zhang, P., Xu, X., Song, E., Hou, X., Yang, X., Mi, J., Huang, J., & Stampfl, C. (2020). Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. Catalysis Communications, 144, 106090. https://doi.org/https://doi.org/10.1016/j.catcom.2020.106090
  • Zhang, X., Hu, J., Cheng, Y., Yang, H. Y., Yao, Y., & Yang, S. A. (2016). Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale, 8(33), 15340–15347. https://doi.org/10.1039/C6NR04186H
  • Zhao, Y., Zeng, S., Lian, C., Dai, Z., Meng, S., & Ni, J. (2018). Multigap anisotropic superconductivity in borophenes. Physical Review B, 98(13), 134514. https://doi.org/10.1103/PhysRevB.98.134514
  • Zhong, Q., Kong, L., Gou, J., Li, W., Sheng, S., Yang, S., Cheng, P., Li, H., Wu, K., & Chen, L. (2017). Synthesis of borophene nanoribbons on Ag(110) surface. Physical Review Materials, 1(2), 21001. https://doi.org/10.1103/PhysRevMaterials.1.021001

Production Methods and Energy Applications of Borophene

Year 2023, Volume: 5 Issue: 1 - JULY 2023 ISSUE, 126 - 142, 15.07.2023
https://doi.org/10.47898/ijeased.1232358

Abstract

Two dimensional materials have unique physical, chemical and electrical properties. Many theoretical studies on borophene revealed important possible properties, such as metallicity, transparency, conductivity and chemical activity; due to vacancies present in its structure. It was first synthesized in 2015 and experimental studies on this new exciting 2D material is few in number. It was found that many of these studies still focus on expensive and sophisticated production methods such as Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD). Although graphene, first of these 2D materials, is being studied more than two decades, it could not do the expected impact on energy industry due to lack of production methods in industrial scale. In this review, it was intended to build a narrative on the experimental production methods and resulting structures of borophene rather than theoretical background. It was found that liquid phase exfoliation method to synthesize borophene sheets might be the most promising method to upscale borophene production. Theoretical, computational and experimental studies suggested that β12 and χ3 borophene structures were stable and could be produced by sonochemical exfoliation method. In addition, possible uses in energy applications and some future prospects were also discussed. Borophene produced this way, might be used in batteries, supercapacitors hydrogen evolution (HER) and oxygen evolution (OER) reactions.

References

  • Albert, B., & Hillebrecht, H. (2009). Boron: Elementary Challenge for Experimenters and Theoreticians. Angewandte Chemie International Edition, 48(46), 8640–8668. https://doi.org/https://doi.org/10.1002/anie.200903246
  • Bhowmik, S., & Govind Rajan, A. (2022). Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. IScience, 25(3), 103832. https://doi.org/https://doi.org/10.1016/j.isci.2022.103832
  • Chen, Y., Yu, G., Chen, W., Liu, Y., Li, G.-D., Zhu, P., Tao, Q., Li, Q., Liu, J., Shen, X., Li, H., Huang, X., Wang, D., Asefa, T., & Zou, X. (2017). Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 139(36), 12370–12373. https://doi.org/10.1021/jacs.7b06337
  • Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/https://doi.org/10.1016/j.mattod.2016.10.002
  • Coleman, J. N. (2013). Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research, 46(1), 14–22. https://doi.org/10.1021/ar300009f
  • Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., Cheng, P., Meng, S., Chen, L., & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. https://doi.org/10.1038/NCHEM.2491
  • Gao, M., Li, Q.-Z., Yan, X.-W., & Wang, J. (2017). Prediction of phonon-mediated superconductivity in borophene. Physical Review B, 95(2), 24505. https://doi.org/10.1103/PhysRevB.95.024505
  • Göktuna, S., & Taşaltın, N. (2021). Preparation and characterization of PANI: α borophene electrode for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 134, 114833.
  • Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44–126. https://doi.org/https://doi.org/10.1016/j.pmatsci.2015.02.002
  • Gupta, V., & Miura, N. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4), 1721–1726. https://doi.org/https://doi.org/10.1016/j.electacta.2006.01.074
  • Jiang, H. R., Lu, Z., Wu, M. C., Ciucci, F., & Zhao, T. S. (2016). Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy, 23, 97–104. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.03.013
  • Jiang, J., Wang, X., & Song, Y. (2018). Tunable magnetic and electronic properties in 3d transition-metal adsorbed β12 and χ3 borophene. Computational Materials Science, 153, 10–15. https://doi.org/https://doi.org/10.1016/j.commatsci.2018.06.010
  • Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., Yakobson, B. I., Hersam, M. C., & Guisinger, N. P. (2019). Borophene Synthesis on Au(111). ACS Nano, 13(4), 3816–3822. https://doi.org/10.1021/acsnano.8b09339
  • Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. T. (2018). Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444
  • Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., Li, H., Chen, L., Cheng, P., & Wu, K. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63(5), 282–286. https://doi.org/https://doi.org/10.1016/j.scib.2018.02.006
  • Liang, P., Cao, Y., Tai, B., Zhang, L., Shu, H., Li, F., Chao, D., & Du, X. (2017). Is borophene a suitable anode material for sodium ion battery? Journal of Alloys and Compounds, 704, 152–159. https://doi.org/https://doi.org/10.1016/j.jallcom.2017.02.050
  • Lin, H., Shi, H., Wang, Z., Mu, Y., Li, S., Zhao, J., Guo, J., Yang, B., Wu, Z.-S., & Liu, F. (2021). Scalable Production of Freestanding Few-Layer β12-Borophene Single Crystalline Sheets as Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Nano, 15(11), 17327–17336. https://doi.org/10.1021/acsnano.1c04961
  • Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4
  • Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., Liu, X., Fisher, B. L., Santiago, U., Guest, J. R., Yacaman, M. J., Ponce, A., Oganov, A. R., Hersam, M. C., & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080
  • Mazaheri, A., Javadi, M., & Abdi, Y. (2021). Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS Applied Materials & Interfaces, 13(7), 8844–8850. https://doi.org/10.1021/acsami.0c22580
  • Mortazavi, B., Dianat, A., Rahaman, O., Cuniberti, G., & Rabczuk, T. (2016). Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study. Journal of Power Sources, 329, 456–461. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.08.109
  • Ou, M., Wang, X., Yu, L., Liu, C., Tao, W., Ji, X., & Mei, L. (2021). The Emergence and Evolution of Borophene. Advanced Science, 8(12), 2001801. https://doi.org/https://doi.org/10.1002/advs.202001801
  • Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New Sensation in Flatland. Advanced Materials, 32(34), 2000531. https://doi.org/https://doi.org/10.1002/adma.202000531
  • Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding Borophene and Its Hybrids. Advanced Materials, 31(27), 1900353. https://doi.org/https://doi.org/10.1002/adma.201900353
  • Razaq, A., Bibi, F., Zheng, X., Papadakis, R., Jafri, S. H. M., & Li, H. (2022). Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials, 15(3). https://doi.org/10.3390/ma15031012
  • Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R., & Markovic, N. M. (2016). Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 29, 29–36. https://doi.org/https://doi.org/10.1016/j.nanoen.2016.04.017
  • Tai, G., Hu, T., Zhou, Y., Wang, X., Kong, J., Zeng, T., You, Y., & Wang, Q. (2015). Synthesis of Atomically Thin Boron Films on Copper Foils. Angewandte Chemie International Edition, 54(51), 15473–15477. https://doi.org/https://doi.org/10.1002/anie.201509285
  • Türkmen, T. A., Taşaltın, N., Taşaltın, C., Baytemir, G., & Karakuş, S. (2022). PEDOT: PSS / β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors. Inorganic Chemistry Communications, 139, 109329. https://doi.org/https://doi.org/10.1016/j.inoche.2022.109329
  • Vinogradov, N. A., Lyalin, A., Taketsugu, T., Vinogradov, A. S., & Preobrajenski, A. (2019). Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS Nano, 13(12), 14511–14518. https://doi.org/10.1021/acsnano.9b08296
  • Vogt, P. (2018). Silicene, germanene and other group IV 2D materials. Beilstein Journal of Nanotechnology, 9, 2665–2667. https://doi.org/10.3762/bjnano.9.248
  • Wang, X., Liang, J., You, Q., Zhu, J., Fang, F., Xiang, Y., & Song, J. (2020). Bandgap Engineering of Hydroxy-Functionalized Borophene for Superior Photo-Electrochemical Performance. Angewandte Chemie International Edition, 59(52), 23559–23563. https://doi.org/https://doi.org/10.1002/anie.202010723
  • Wang, X., Wu, R., Tian, P., Yan, Y., Gao, Y., & Xuan, F. (2021). Borophene Nanoribbons via Strain Engineering for the Hydrogen Evolution Reaction: A First-Principles Study. The Journal of Physical Chemistry C, 125(31), 16955–16962. https://doi.org/10.1021/acs.jpcc.1c02770
  • Wu, R., Drozdov, I. K., Eltinge, S., Zahl, P., Ismail-Beigi, S., Božović, I., & Gozar, A. (2019). Large-area single-crystal sheets of borophene on Cu(111) surfaces. NAtuRE NANotEChNoLoGy |, 14. https://doi.org/10.1038/s41565-018-0317-6
  • Xie, Z., Meng, X., Li, X., Liang, W., Huang, W., Chen, K., Chen, J., Xing, C., Qiu, M., Zhang, B., Nie, G., Xie, N., Yan, X., & Zhang, H. (2020). Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research, 2020, 2624617. https://doi.org/10.34133/2020/2624617
  • Xu, M., Zhang, X., Liu, Y., Zhao, X., Liu, Y., Wu, R., & Wang, J. (2020). Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3d Transition Metal Atoms Doped Borophene Nanosheets. ChemPhysChem, 21(24), 2651–2659. https://doi.org/https://doi.org/10.1002/cphc.202000692
  • Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., Lei, Z., & Liu, Z.-H. (2020). Few-layer and large flake size borophene: preparation with solvothermal-assisted liquid phase exfoliation †. https://doi.org/10.1039/d0ra03492d
  • Zhang, L., Gong, T., Yu, Z., Dai, H., Yang, Z., Chen, G., Li, J., Pan, R., Wang, H., Guo, Z., Zhang, H., & Fu, X. (2021). Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials, 31(1), 2005471. https://doi.org/https://doi.org/10.1002/adfm.202005471
  • Zhang, P., Xu, X., Song, E., Hou, X., Yang, X., Mi, J., Huang, J., & Stampfl, C. (2020). Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. Catalysis Communications, 144, 106090. https://doi.org/https://doi.org/10.1016/j.catcom.2020.106090
  • Zhang, X., Hu, J., Cheng, Y., Yang, H. Y., Yao, Y., & Yang, S. A. (2016). Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale, 8(33), 15340–15347. https://doi.org/10.1039/C6NR04186H
  • Zhao, Y., Zeng, S., Lian, C., Dai, Z., Meng, S., & Ni, J. (2018). Multigap anisotropic superconductivity in borophenes. Physical Review B, 98(13), 134514. https://doi.org/10.1103/PhysRevB.98.134514
  • Zhong, Q., Kong, L., Gou, J., Li, W., Sheng, S., Yang, S., Cheng, P., Li, H., Wu, K., & Chen, L. (2017). Synthesis of borophene nanoribbons on Ag(110) surface. Physical Review Materials, 1(2), 21001. https://doi.org/10.1103/PhysRevMaterials.1.021001
There are 41 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Halil Ekici 0000-0002-8750-5591

Early Pub Date June 25, 2023
Publication Date July 15, 2023
Submission Date January 11, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1 - JULY 2023 ISSUE

Cite

APA Ekici, H. (2023). Production Methods and Energy Applications of Borophene. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 5(1), 126-142. https://doi.org/10.47898/ijeased.1232358