Year 2018, Volume 5 , Issue 2, Pages 82 - 97 2018-10-20

Greenough River Solar Farm case study & validation initialization

Burak Omer Saracoglu [1] , Angus King [2]


Large Photovoltaic Solar Power Plants (LPVPPs) and Very Large Photovoltaic Solar Power Plants (VLPVPPs) may have rapid success in the revolutionary change of the national and international power grids to build a 100% renewable power Global Grid. The Australian continent has outstanding solar resource availability, enabling widespread utilization of solar power and power storage technologies (e.g. pumped hydroelectric, thermal, electrochemical). Design and investment modeling of the renewable power grid is the success key for a 100% renewable power grid. The design and investment in LPVPPs and VLPVPPs should preferably be undertaken with the consideration of values such as environmental friendliness, fairness, openness to small private investors, reliability, and accountability. The design of LPVPPs and VLPVPPs should preferably be based on some small-scale PV power plants to help reduce the risks for large to very large investments. Hence, validation and verification efforts of operational PV power plants with different design software are very important for the solar industry. This research paper presents the first specific validation and verification study of the Greenough River Solar Farm (12,68 MWDC, 10,00 MWAC, the first planned expansion to 40,00 MWAC in 2019) near Geraldton in Western Australia with the PVWatts Version 5 model of the National Renewable Energy Laboratory (NREL) System Advisor Model (SAM) Version 2017.9.5. The National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) datasets are used as a weather data source in this study. Location and resource, system design data and information on the Greenough River Solar Farm in this study are presumptions based upon publicly available information without any confirmation of power plant owners and operators. The Greenough River Solar Farm NREL SAM software models' are run on 2 different personal computers (PCs) with internet connection for years 2013 to 2017. The results of 6 simple simulations are compared with actual generation data for 2013 through 2017 with some statistical performance measures of the global unique forecast accuracy metrics pool in the Global Grid Prediction Systems (G2PS). The simulations average total time (milliseconds) are 64.1 and 77.9. The best model/actual accuracy measure is 101.9%. The minimum root mean square error (RMSE) is 254.142 MWh in 2013. The maximum RMSE is 414.931 MWh in 2014.
SAM, System Advisor Model, Greenough River Solar Farm, Very Large Photovoltaic Solar Power Plants, NASA MERRA-2, Australia
  • B.O. Saracoglu, “An Experimental Fuzzy Expert System Based Application For The Go/No-Go Decisions To The Geospatial Investigation Studies Of The Regions Of The Very Large Concentrated Solar Power Plants In The European Supergrid Concept”, WSC 18 The 18th Online World Conference on Soft Computing in Industrial Applications, 1-12 December, World Wide Web, 2014.
  • B.O. Saracoglu, “SEGS VI & Topaz Solar Farm SAM Empirical Trough & PVWatts Models Case Studies & Validation”, International Journal of Research in Advanced Engineering Technologies, vol. 1, no.1, pp. 28–41, 2017.
  • D. Neumark, B. Wall, J. Zhang, “Do Small Businesses Create More Jobs? New Evidence for the United States from the National Establishment Time Series”, Review of Economics and Statistics, vol. 93, no.1, pp. 16–29, 2011.
  • D. Neumark, B. Wall, J. Zhang, “Do Small Businesses Create More Jobs? New Evidence for the United States from the National Establishment Time Series”, Review of Economics and Statistics, vol. 93, no.1, pp. 16–29, 2011.
  • G. de Wit, J. de Kok, “Do small businesses create more jobs? New evidence for Europe”, Small Business Economics, vol. 42, no.2, pp. 283–295, 2014.
  • M. Ayyagari, A. Demirgüç-Kunt, V. Maksimovic “Small vs. Young Firms Across the World: Contribution to Employment, Job Creation, and Growth”, Policy Research Working Paper 5631 https://poseidon01.ssrn.com/delivery.php?ID=883022123123087086031080002007096126018076068001039051073061122031117111012006047059018086095117008092048019011105076118108000107070094084014002093068093082117088015120112028127074114078120&EXT=pdf.
  • FreeGreenius http://freegreenius.dlr.de/
  • HOMER. http://www.homerenergy.com/
  • PV F-Chart. http://www.fchart.com/pvfchart/
  • PVsyst. http://www.pvsyst.com/.
  • RETScreen Expert. https://www.nrcan.gc.ca/energy/software-tools/7465
  • System Advisor Model (SAM). https://sam.nrel.gov/.
  • System Advisor Model Version 2017.9.5 (SAM 2017.9.5). National Renewable Energy Laboratory. Golden, CO. https://sam.nrel.gov/content/downloads
  • N. Blair, A. Dobos, J. Freeman, T. Neises, M. Wagner, T. Ferguson, P. Gilman, S. Janzou, 2014. “System Advisor Model, SAM 2014.1.14: General Description”. NREL/TP-6A20-61019. National Renewable Energy Laboratory. Golden, CO. http://www.nrel.gov/docs/fy14osti/61019.pdf
  • https://sam.nrel.gov/sites/default/files/content/updates/releasenotes.html
  • https://sam.nrel.gov/libraries
  • https://www.nrel.gov/
  • https://www.wisc.edu/
  • http://www.sandia.gov/
  • http://www.energy.ca.gov/
  • https://energy.gov/
  • https://sam.nrel.gov/performance
  • https://sam.nrel.gov/financial
  • A.P. Dobos, 2014, “PVWatts Version 5 Manual”, National Renewable Energy Laboratory, NREL/TP-6A20-62641, http://www.nrel.gov/docs/fy14osti/62641.pdf.
  • https://www.pv-tech.org/editors-blog/first-solar-ramping-series-6-capex-as-rd-spending-declines
  • http://www.firstsolar.com/
  • http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-4-Datasheets/Series-4V3-Module-Datasheet.ashx
  • http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-6-Datasheets/Series-6-Datasheet.ashx
  • http://www.firstsolar.com/Resources/Technical-Documents
  • https://us.sunpower.com/
  • https://us.sunpower.com/products/solar-panels/
  • https://us.sunpower.com/solar-panels-technology/x-series-solar-panels/
  • https://us.sunpower.com/solar-panels-technology/e-series-solar-panels/
  • https://us.sunpower.com/solar-panels-technology/p-series-solar-panels/
  • http://www.yinglisolar.com/en/
  • http://www.yinglisolar.com/en/products/multicrystalline/yge-60-cell-series/
  • http://www.yinglisolar.com/en/products/monocrystalline/panda-bifacial-60cf/
  • http://www.renesola.com/product/Solar/
  • https://www.solarworld.de/en/home/
  • https://www.recgroup.com/en
  • http://trinasolar.com/
  • http://www.suntech-power.com/
  • https://www.hanwha-qcells.com/
  • http://en.jasolar.com/
  • https://www.canadiansolar.com/
  • https://www.jinkosolar.com/
  • http://www.aie.org.au/AIE/Documents/Energy_News_December.pdf
  • http://www.firstsolar.com/PV-Plants/Project-Development
  • http://www.firstsolar.com/Resources/Projects/Mohammed-Bin-Rashid-Al-Maktoum-Solar-Park
  • http://www.firstsolar.com/Resources/Projects/Shams-Maan-Power-Generation-Solar-Photovoltaic-Power-Plant
  • http://www.firstsolar.com/Resources/Projects/Mahabubnagar-Solar-Park
  • http://www.firstsolar.com/Resources/Projects/Hindupur-Solar-Park
  • http://www.firstsolar.com/Resources/Projects/Otjozondjupa-Solar-Park
  • http://www.firstsolar.com/Resources/Projects/Topaz-Solar-Farm
  • http://www.firstsolar.com/Resources/Projects/Copper-Mountain-Solar-1
  • http://www.firstsolar.com/Resources/Projects/Agua-Caliente-Solar-Project
  • http://www.firstsolar.com/Resources/Projects/Luz-del-Norte
  • http://www.firstsolar.com/Resources/Projects/Wellington-Solar-Farm
  • http://www.firstsolar.com/Resources/Projects/Greenough-River-Solar-Farm
  • http://www.greenoughsolarfarm.com.au/project/about-project
  • http://www.greenoughsolarfarm.com.au/project/photovoltaic-pv-technology
  • http://www.greenoughsolarfarm.com.au/project/building-solar-farm
  • http://www.greenoughsolarfarm.com.au/project/project-site
  • Saracoglu, B.O., 2017, “An Experimental Fuzzy Inference System for the Third Core Module of the First Console on the Global Grid Peak Power Prediction System & Its Forecasting Accuracy Measures' Comparisons with the First and the Second Core Modules”, Journal Of Energy Systems, 1(2), 75-101.
  • Saracoglu, B.O., 2017, “Comparative Study On Experimental Type 1 & Interval & General Type 2 Mamdani FIS for G2P3S”, Global Journal of Researches in Engineering: J General Engineering, 17(2), 27-42.
  • Saracoglu, B.O., 2017, “Comparative Study On Experimental 2 to 9 Triangular Fuzzy Membership Function Partitioned Type 1 Mamdani's FIS For G2EDPS”, Global Journal of Researches in Engineering: J General Engineering, 17(2), 1-18.
  • Saracoglu, B.O., 2017, “G2EDPS's First Module & Its First Extension Modules”, American Journal of Applied Scientific Research, 3(4), 33-48.
  • https://www.google.com/intl/tr/earth/ Google Earth Pro 7.1.5.1557
  • http://www.greenoughsolarfarm.com.au/node/28
  • http://www.greenoughsolarfarm.com.au/node/13
  • http://www.getpaint.net/index.html Paint.NET.4.0.16
  • King, A. (2017). sen_makeweather_getmerra2.exe. Sourceforge.net. (https://sourceforge.net/projects/sensiren/files/sen_makeweather_getmerra2.exe/download (accessed 2017)
  • Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1). http://gmao.gsfc.nasa.gov/pubs/office_notes (accessed November 2016)
  • Richardson, D. B. and Andrews, R.W. (2014). Validation of the MERRA dataset for solar PV applications. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp 809-814.
  • Pfenninger, S. and Staffell, I. (2016). Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (2016). pp1251-1265
  • Maxwell, E.L (1987). A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation. Technical Report No. SERI/TR-215-3087, Solar Energy Research Institute. Golden, CO. http://rredc.nrel.gov/solar/models/DISC/ (accessed November 2016)
  • National Renewable Energy Laboratory (NREL, 2012). DNI-GHI to DHI calculator. https://sam.nrel.gov/sites/default/files/content/documents/xls/DNI-GHI_to_DHI_Calculator.xlsx (accessed November 2016)
  • http://www.ixlsolar.com.au/portfolio/ground-mount-solar-system-case-study/
  • https://www.enfsolar.com/pv/panel-datasheet/Thin-film/117
  • http://solar.missionenergy.org/presentations/First%20Solar.pdf
  • http://www.all-energy.com.au/RXAU/RXAU_All-Energy/documents/2013_Day_1_Presentations/Wed%20Solar%201100%20Mark%20Rayner.pdf?v=635191354957379747
  • http://www.erawa.com.au/cproot/17902/2/Greenough%20River%20Solar%20Farm%20Pty%20Ltd%20-%20Generation%20Licence%20Application%20-%20EGL027.PDF
  • http://files.sma.de/dl/15867/SCCPUS-DUS134831W.pdf
  • https://www.solarelectricsupply.com/sunny-boy-sunny-central-720cp-inverters-492
  • Fletcher, G.W. 2014, "The Guide to Photovoltaic System Installation", Cengage Learning, the U.S.A.
  • Kreith, F. 2014, "Principles of Sustainable Energy Systems", CRC Press, the U.S.A.
  • System Advisor Model Version 2017.9.5 (SAM 2017.9.5) User Documentation. PVWatts System Design Orientation. National Renewable Energy Laboratory. Golden, CO.
  • System Advisor Model Version 2017.9.5 (SAM 2017.9.5) User Documentation. PVWatts, System Design, Losses. National Renewable Energy Laboratory. Golden, CO.
  • http://saudi-sia.com/wp-content/uploads/2013/05/9-Lessons-learnt-from-PV-power-plants-in-the-US-desert-v5.pdf
  • http://apvi.org.au/solar-research-conference/wp-content/uploads/2017/12/019_Morley-Ghiotto_DI_Paper_Final_Peer-reviewed.pdf
  • https://us.sunpower.com/sites/sunpower/files/media-library/white-papers/wp-impact-tilt-angle-system-economics-area-constrained-rooftops.pdf
  • https://cdn.enfsolar.com/Product/pdf/Thin%20film/50cfe38c32991.pdf
  • https://weatherspark.com/y/127545/Average-Weather-in-Geraldton-Australia-Year-Round
  • https://en.climate-data.org/location/863/
  • http://www.bom.gov.au/climate/averages/tables/cw_008051.shtml
  • http://www.bom.gov.au/climate/averages/tables/cw_008051_All.shtml
  • http://weather.mla.com.au/climate-history/wa/geraldton
  • http://www.geraldton.climatemps.com/index.php
  • http://www.bom.gov.au/climate/averages/tables/cw_008095.shtml
  • http://ecgllp.com/files/5214/0200/1304/9-System-Sizing.pdf
  • Gevorkian, P., 2016, “Solar Power Generation Problems, Solutions, and Monitoring”, First edition, Cambridge University Press, the U.S.A..
  • https://www.nrel.gov/docs/fy05osti/37358.pdf
  • https://www.nrel.gov/docs/fy12osti/51664.pdf
  • http://www.atonometrics.com/wp-content/uploads/2011/07/Light-Soaking-Overview_Gostein-Dunn_37th-IEEE-PVSC-2011.pdf
  • http://www.firstsolar.com/-/media/First-Solar/Knowledge-Center/First-Solar_Plant-Performance-in-Southeast-Asia.ashx
  • http://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Peer-Reviews/Chile-Peer-Review---Cener_EN.ashx
  • https://www.irishellas.com/files/PVI_22_First_Solar_Reliability_WhitePaper_lowres.pdf
  • http://saudi-sia.com/wp-content/uploads/2014/12/Module-Technology-Update-Nick-Strevel.pdf
  • http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-4-Energy-Prediction/Third-Party-Validation-of-First-Solar-PAN-Files.ashx?la=en
  • https://www.mediastatements.wa.gov.au/MediaDocuments/projectinfo.pdf
  • Australian Energy Market Operator (AEMO, 2018). Market Data Western Australia – Facility Scada. http://data.wa.aemo.com.au/#facility-scada (accessed February 2018)
  • http://reneweconomy.com.au/solar-power-does-work-and-a-lot-better-than-we-thought-29528/
  • Saracoglu, B.O., 2017, “Long Term Electricity Demand & Peak Power Load Forecasting Variables Identification & Selection”, International Journal of Systems Engineering, 6(2), 18-28.
  • Patnode, A.M. 2006 “Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants”, Master Of Science Thesis, University of Wisconsin-Madison, Madison, Wisconsin, U.S.
  • Padilla, R.V., 2011 “Simplified Methodology for Designing Parabolic Trough Solar Power Plants”, Doctor of Philosophy Thesis, University of South Florida, Tampa, Florida, U.S.
  • Armstrong J.S., Collopy F., 1992 “Error measures for generalizing about forecasting methods: Empirical comparisons” International journal of forecasting, 8(1) 69-80.
  • Hyndman R.J., 2006 “Another look at forecast-accuracy metrics for intermittent demand”. Foresight: The International Journal of Applied Forecasting, 4(4) 43-46.
  • Kolassa S, Martin R, 2011 “Percentage Errors Can Ruin Your Day (and Rolling the Dice Shows How)”. Foresight: The International Journal of Applied Forecasting, 23.
  • Makridakis S, Hogarth R.M., Gaba A., 2010 “Why forecasts fail. What to do instead”. MIT Sloan Management Review, 51(2)
  • National Aeronautics and Space Administration (NASA, 2015). Modern-Era Retrospective analysis for Research and Applications, Version 2. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed November 2016)
  • King A. (2018) SIREN: SEN’s Interactive Renewable Energy Network Tool. In: Sayigh A. (eds) Transition Towards 100% Renewable Energy. Innovative Renewable Energy. Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-319-69844-1_19 (accessed February 2018)
  • Sustainable Energy Now Inc. (SEN, 2016). Modelling Overview - the SIREN Toolkit and more. http://www.sen.asn.au/modelling_overview (accessed February 2018)
  • Saracoglu, B.O., 2018 Solar Star Projects SAM version 2017.9. 5 PVwatts version 5 model case study & validation. International Journal of Energy Applications and Technologies, 5(1), 13-28.
Primary Language en
Subjects Engineering, Multidisciplinary
Journal Section Research Article
Authors

Orcid: 0000-0002-2171-2299
Author: Burak Omer Saracoglu (Primary Author)
Country: Turkey


Author: Angus King (Primary Author)
Country: Australia


Dates

Publication Date : October 20, 2018

Bibtex @research article { ijeat420701, journal = {International Journal of Energy Applications and Technologies}, issn = {}, eissn = {2548-060X}, address = {editor.ijeat@gmail.com}, publisher = {İlker ÖRS}, year = {2018}, volume = {5}, pages = {82 - 97}, doi = {10.31593/ijeat.420701}, title = {Greenough River Solar Farm case study \& validation initialization}, key = {cite}, author = {Saracoglu, Burak Omer and King, Angus} }
APA Saracoglu, B , King, A . (2018). Greenough River Solar Farm case study & validation initialization. International Journal of Energy Applications and Technologies , 5 (2) , 82-97 . DOI: 10.31593/ijeat.420701
MLA Saracoglu, B , King, A . "Greenough River Solar Farm case study & validation initialization". International Journal of Energy Applications and Technologies 5 (2018 ): 82-97 <https://dergipark.org.tr/en/pub/ijeat/issue/39866/420701>
Chicago Saracoglu, B , King, A . "Greenough River Solar Farm case study & validation initialization". International Journal of Energy Applications and Technologies 5 (2018 ): 82-97
RIS TY - JOUR T1 - Greenough River Solar Farm case study & validation initialization AU - Burak Omer Saracoglu , Angus King Y1 - 2018 PY - 2018 N1 - doi: 10.31593/ijeat.420701 DO - 10.31593/ijeat.420701 T2 - International Journal of Energy Applications and Technologies JF - Journal JO - JOR SP - 82 EP - 97 VL - 5 IS - 2 SN - -2548-060X M3 - doi: 10.31593/ijeat.420701 UR - https://doi.org/10.31593/ijeat.420701 Y2 - 2018 ER -
EndNote %0 International Journal of Energy Applications and Technologies Greenough River Solar Farm case study & validation initialization %A Burak Omer Saracoglu , Angus King %T Greenough River Solar Farm case study & validation initialization %D 2018 %J International Journal of Energy Applications and Technologies %P -2548-060X %V 5 %N 2 %R doi: 10.31593/ijeat.420701 %U 10.31593/ijeat.420701
ISNAD Saracoglu, Burak Omer , King, Angus . "Greenough River Solar Farm case study & validation initialization". International Journal of Energy Applications and Technologies 5 / 2 (October 2018): 82-97 . https://doi.org/10.31593/ijeat.420701
AMA Saracoglu B , King A . Greenough River Solar Farm case study & validation initialization. IJEAT. 2018; 5(2): 82-97.
Vancouver Saracoglu B , King A . Greenough River Solar Farm case study & validation initialization. International Journal of Energy Applications and Technologies. 2018; 5(2): 97-82.