Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 3, 69 - 73, 05.10.2020
https://doi.org/10.31593/ijeat.734640

Abstract

References

  • Tenenbaum D.J. 2008.Food vs. fuel: diversion of crops could cause more hunger.Environ. Health Persp., 116, A254-A257.
  • Derakhshan M.V., Nasernejad B., Abbaspour-Aghdam F., Hamidi M.2015.Oil extraction from algae: A comparative approach. Biotechnol. Appl. Biochem., 62,375-382.
  • Tevatia R., Demirel Y., Blum P. 2012.Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresour. Technol., 119, 419-424.
  • Canakci M. and Sanli H.2008. Biodiesel production from various feedstocks and their effects on the fuel properties,J. Ind. Microbiol.Biotechnol., 35, 431-441.
  • James G.O., Hocart C.H., Hillier W., Chen H., Kordbacheh F., Price G.D., Djordjevic M.A. 2011.Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation, Bioresour.Technol., 102, 3343-3351.
  • Tevatia R., Allen J., Blum P., Demirel Y., Black P.2014 Modeling of rhythmic behavior in neutral lipid production due to continuous supply of limited nitrogen: Mutual growth and lipid accumulation in microalgae Bioresour. Technol., 170, 152-159.
  • Scranton M.A., Ostrand J.T., Fields F.J., Mayfield S.P.2015.Chlamydomonas as a model for biofuels and bio-products production Plant J., 82, 523-531.
  • Siaut M., Cuiné S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., Peltier G. 2011.Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol., 11, 7.
  • Tevatia R., Demirel Y., Rudrappa D., Blum P.2015. Effects of thermodynamically coupled reaction diffusion in microalgae growth and lipid accumulation: Model development and stability analysis. Comput. Chem. Eng., 75, 28-39.
  • Yang L., Chen J., Qin S., Zeng M., Jiang J., Hu L., Xiao P., Hao W., Hu, Z., Lei A., Wang J. 2018.Growth and lipid accumulation by different nutrients in the microalga Chlamydomonasreinhardtii.Biotechnol. Biofuels., 11, 40.
  • Zhang X.W., Chen F., Johns M.R.1999. Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures.Process Biochem., 35, 385-389.
  • Allen J.W., Tevatia R., Demirel Y., DiRusso C.C., Black P.N. 2018. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgaeCoccomyxasubellipsoidea C169. PloS One, 13, e0204505-e0204505.
  • Küçük K., Tevatia R., Sorgüven E., Demirel Y., Özilgen M. 2015Bioenergetics of growth and lipid production in Chlamydomonasreinhardtii. Energy, 83, 503-510.
  • Cooney M., Young G., Nagle N. 2009.Extraction of Bio-oils from Microalgae.Sep. Purif. Rev., 38, 291-325.
  • Abdelmoez W., Ashour E., Naguib S.M., Hilal A., Al Mahdy D.A., Mahrous E.A., Sattar E.A. 2016.Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.J. Oleo Sci., 65, 477-485.
  • Devappa R.K., Makkar H.P.S., Becker K. 2010.Optimization of conditions for the extraction of phorbol esters from Jatropha oil.Biomass Bioenergy, 34, 1125-1133.
  • SantosS.B.d., Martins M.A., Caneschi A.L., Aguilar P.R.M., J. S. R. Coimbra J.S.R. 2015. Kinetics and Thermodynamics of Oil Extraction from Jatrophacurcas L. Using Ethanol as a Solvent.Int. J. Chem. Eng., 2015, 9.
  • Mathiarasi R. and N. Partha N.2016.Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production,Renew. Energy., 96, 583-590.
  • Meziane S., Kadi H. 2008.Kinetics and Thermodynamics of Oil Extraction from Olive Cake. J. Am. Oil Chem. Soc., 85, 391-396.
  • Sulaiman S., Abdul Aziz A.R., KheireddineAroua M. 2013.Optimization and modeling of extraction of solid coconut waste oil. J. Food Eng., 114, 228-234.
  • Sivakumar P.,Parthiban K.S., Sivakumar P., Vinoba M., Renganathan S.2012.Optimization of Extraction Process and Kinetics of Sterculiafoetida Seed Oil and Its Process Augmentation for Biodiesel Production.Ind.Eng. Chem. Res., 51, 8992-8998.
  • Patil P.D., Dandamudi K.P.R., Wang J., Deng Q., Deng S.2018. Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J. Supercrit. Fluid, 135, 60-68.

Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane

Year 2020, Volume: 7 Issue: 3, 69 - 73, 05.10.2020
https://doi.org/10.31593/ijeat.734640

Abstract

The growth kinetics and bioenergetics of microalgae is well studied; however, the kinetics and thermodynamics of extraction of lipids from microalgae is poorly understood. The present study focuses on the kinetics and thermodynamics of the lipid extraction process from microalgae Chlamydomonas reinhardtii using n-hexanein a Soxhlet extractor. The extraction process was shown to increase lipids extraction with temperature (from 35 to 55 °C). Further, at a given temperature, the percent lipid extraction is linearly increased till 1.5 hours and then remained almost constant. The statistical analysis including parameters like correlation coefficient (R2), the root mean square (RMS), standard deviation (SD) and standard error of estimation (SEE) were used to establish the relevance of each model. The series of best kinetic models from high to low prominence is pseudo-second order, hyperbolic, Elovich’s, parabolic and power model. The enthalpy and entropy of the present system is 266.31 kJ/mol and 0.924 kJ/mol-K, respectively. The Gibb’s free energy decreased from -19.053 to -37.412 kJ/mol as the extraction temperature increased. The kinetic and thermodynamics parameters evaluation suggested that the microalgal lipid extraction using n-hexane is efficient and a spontaneous process.

References

  • Tenenbaum D.J. 2008.Food vs. fuel: diversion of crops could cause more hunger.Environ. Health Persp., 116, A254-A257.
  • Derakhshan M.V., Nasernejad B., Abbaspour-Aghdam F., Hamidi M.2015.Oil extraction from algae: A comparative approach. Biotechnol. Appl. Biochem., 62,375-382.
  • Tevatia R., Demirel Y., Blum P. 2012.Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresour. Technol., 119, 419-424.
  • Canakci M. and Sanli H.2008. Biodiesel production from various feedstocks and their effects on the fuel properties,J. Ind. Microbiol.Biotechnol., 35, 431-441.
  • James G.O., Hocart C.H., Hillier W., Chen H., Kordbacheh F., Price G.D., Djordjevic M.A. 2011.Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation, Bioresour.Technol., 102, 3343-3351.
  • Tevatia R., Allen J., Blum P., Demirel Y., Black P.2014 Modeling of rhythmic behavior in neutral lipid production due to continuous supply of limited nitrogen: Mutual growth and lipid accumulation in microalgae Bioresour. Technol., 170, 152-159.
  • Scranton M.A., Ostrand J.T., Fields F.J., Mayfield S.P.2015.Chlamydomonas as a model for biofuels and bio-products production Plant J., 82, 523-531.
  • Siaut M., Cuiné S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., Peltier G. 2011.Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol., 11, 7.
  • Tevatia R., Demirel Y., Rudrappa D., Blum P.2015. Effects of thermodynamically coupled reaction diffusion in microalgae growth and lipid accumulation: Model development and stability analysis. Comput. Chem. Eng., 75, 28-39.
  • Yang L., Chen J., Qin S., Zeng M., Jiang J., Hu L., Xiao P., Hao W., Hu, Z., Lei A., Wang J. 2018.Growth and lipid accumulation by different nutrients in the microalga Chlamydomonasreinhardtii.Biotechnol. Biofuels., 11, 40.
  • Zhang X.W., Chen F., Johns M.R.1999. Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures.Process Biochem., 35, 385-389.
  • Allen J.W., Tevatia R., Demirel Y., DiRusso C.C., Black P.N. 2018. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgaeCoccomyxasubellipsoidea C169. PloS One, 13, e0204505-e0204505.
  • Küçük K., Tevatia R., Sorgüven E., Demirel Y., Özilgen M. 2015Bioenergetics of growth and lipid production in Chlamydomonasreinhardtii. Energy, 83, 503-510.
  • Cooney M., Young G., Nagle N. 2009.Extraction of Bio-oils from Microalgae.Sep. Purif. Rev., 38, 291-325.
  • Abdelmoez W., Ashour E., Naguib S.M., Hilal A., Al Mahdy D.A., Mahrous E.A., Sattar E.A. 2016.Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.J. Oleo Sci., 65, 477-485.
  • Devappa R.K., Makkar H.P.S., Becker K. 2010.Optimization of conditions for the extraction of phorbol esters from Jatropha oil.Biomass Bioenergy, 34, 1125-1133.
  • SantosS.B.d., Martins M.A., Caneschi A.L., Aguilar P.R.M., J. S. R. Coimbra J.S.R. 2015. Kinetics and Thermodynamics of Oil Extraction from Jatrophacurcas L. Using Ethanol as a Solvent.Int. J. Chem. Eng., 2015, 9.
  • Mathiarasi R. and N. Partha N.2016.Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production,Renew. Energy., 96, 583-590.
  • Meziane S., Kadi H. 2008.Kinetics and Thermodynamics of Oil Extraction from Olive Cake. J. Am. Oil Chem. Soc., 85, 391-396.
  • Sulaiman S., Abdul Aziz A.R., KheireddineAroua M. 2013.Optimization and modeling of extraction of solid coconut waste oil. J. Food Eng., 114, 228-234.
  • Sivakumar P.,Parthiban K.S., Sivakumar P., Vinoba M., Renganathan S.2012.Optimization of Extraction Process and Kinetics of Sterculiafoetida Seed Oil and Its Process Augmentation for Biodiesel Production.Ind.Eng. Chem. Res., 51, 8992-8998.
  • Patil P.D., Dandamudi K.P.R., Wang J., Deng Q., Deng S.2018. Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J. Supercrit. Fluid, 135, 60-68.
There are 22 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Satyam Parida This is me 0000-0002-0623-3345

Satya Bıswal 0000-0003-4875-607X

Publication Date October 5, 2020
Submission Date May 13, 2020
Acceptance Date July 16, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

APA Parida, S., & Bıswal, S. (2020). Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane. International Journal of Energy Applications and Technologies, 7(3), 69-73. https://doi.org/10.31593/ijeat.734640
AMA Parida S, Bıswal S. Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane. IJEAT. October 2020;7(3):69-73. doi:10.31593/ijeat.734640
Chicago Parida, Satyam, and Satya Bıswal. “Kinetics and Thermodynamics of Lipids Extraction from Microalgae Using N-Hexane”. International Journal of Energy Applications and Technologies 7, no. 3 (October 2020): 69-73. https://doi.org/10.31593/ijeat.734640.
EndNote Parida S, Bıswal S (October 1, 2020) Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane. International Journal of Energy Applications and Technologies 7 3 69–73.
IEEE S. Parida and S. Bıswal, “Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane”, IJEAT, vol. 7, no. 3, pp. 69–73, 2020, doi: 10.31593/ijeat.734640.
ISNAD Parida, Satyam - Bıswal, Satya. “Kinetics and Thermodynamics of Lipids Extraction from Microalgae Using N-Hexane”. International Journal of Energy Applications and Technologies 7/3 (October 2020), 69-73. https://doi.org/10.31593/ijeat.734640.
JAMA Parida S, Bıswal S. Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane. IJEAT. 2020;7:69–73.
MLA Parida, Satyam and Satya Bıswal. “Kinetics and Thermodynamics of Lipids Extraction from Microalgae Using N-Hexane”. International Journal of Energy Applications and Technologies, vol. 7, no. 3, 2020, pp. 69-73, doi:10.31593/ijeat.734640.
Vancouver Parida S, Bıswal S. Kinetics and thermodynamics of lipids extraction from microalgae using n-hexane. IJEAT. 2020;7(3):69-73.