Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 4, 107 - 114, 31.12.2020
https://doi.org/10.31593/ijeat.772113

Abstract

Supporting Institution

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

17L0443014

References

  • Kothari R., Tyagi V. V., Pathak A. 2010. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, 14, 3164–70.
  • Wu X., Wu Y., Wu K., Chen Y., Hu H., Yang M. 2015. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene. Bioresource Technology, 192, 522–8.
  • Kan T., Strezov V., Evans T. J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–40. https://doi.org/10.1016/j.rser.2015.12.185.
  • Jin H., Hanif M.U., Capareda S., Chang Z., Huang H., Ai Y. 2016. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4, 365–72.
  • Demirbas A. 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–16.
  • Rodionova M. V., Poudyal R. S., Tiwari I., Voloshin R. A., Zharmukhamedov S. K., Nam H. G. 2017. Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy, 42, 8450–61.
  • Chen W., Li K., Xia M., Yang H., Chen Y., Chen X. 2018. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy, 157, 472–82.
  • Gómez Millán G., Hellsten S., Llorca J., Luque R., Sixta H., Balu A. M. 2019. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 11, 2022–42.
  • Tian M., Zhu Y., Zhang D., Wang M., Chen Y., Yang Y. 2019. Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-Fenton process. Nano Energy, 64, 103940.
  • Hossain S. M. Z. 2019. Biochemical Conversion of Microalgae Biomass into Biofuel. Chemical Engineering Technology, 42, 2594–607.
  • Marcon N. S., Colet R., Bibilio D., Graboski A. M., Steffens C., Rosa C. D. 2019. Production of Ethyl Esters by Direct Transesterification of Microalga Biomass Using Propane as Pressurized Fluid. Applied Biochemistry and Biotechnology, 187, 1285–99.
  • Panwar N. L., Kothari R., Tyagi V. V. 2012. Thermo chemical conversion of biomass - Eco friendly energy routes. Renewable and Sustainable Energy Reviews, 16, 1801–16.
  • Luque R., Menéndez J. A., Arenillas A., Cot J. 2012. Microwave-assisted pyrolysis of biomass feedstocks: The way forward?. Energy & Environmental Science, 5, 5481–8.
  • Abhijeet P., Swagathnath G., Rangabhashiyam S., Asok Rajkumar M., Balasubramanian P. 2020. Prediction of pyrolytic product composition and yield for various grass biomass feedstocks. Biomass Conversion and Biorefinery, 10, 663–74.
  • Akhtar J., Saidina Amin N. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16, 5101–9.
  • Moreira D., Pires J. C. M. 2016. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215, 371–9.
  • Li Y., Horsman M., Wu N., Lan C. Q., Dubois-Calero N. 2008. Biofuels from Microalgae. Biotechnology Progress, 24, 815-20.
  • Huang Y., Chen Y., Xie J., Liu H., Yin X., Wu C. 2016. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp.. Fuel, 183, 9–19.
  • Chaiwong K., Kiatsiriroat T., Vorayos N., Thararax C. 2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–6.
  • Chen W., Yang H., Chen Y., Xia M., Yang Z., Wang X. 2017. Algae pyrolytic poly-generation: Influence of component difference and temperature on products characteristics. Energy, 131, 1–12.
  • Andrade L. A, Batista F. R. X., Lira T. S., Barrozo M. A. S., Vieira L. G. M. 2017. Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renewable Energy, 119, 731–40.
  • Anand V., Sunjeev V., Vinu R. 2016. Catalytic fast pyrolysis of Arthrospira platensis (spirulina) algae using zeolites. Journal of Analytical and Applied Pyrolysis, 118, 298–307.
  • Costa J. A. V., Freitas B. C. B., Rosa G. M., Moraes L., Morais M. G., Mitchell B. G. 2019. Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology, 292, 121946.
  • Li J., Qiao Y., Zong P., Wang C., Tian Y., Qin S. 2019. Thermogravimetric Analysis and Isoconversional Kinetic Study of Biomass Pyrolysis Derived from Land, Coastal Zone, and Marine. Energy & Fuels, 33, 3299–310.
  • Chagas B. M. E., Dorado C., Serapiglia M. J., Mullen C. A., Boateng A. A., Melo M. A. F. 2016. Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel, 179, 124–34.
  • Vasudev V., Ku X., Lin J. 2020. Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis. Bioresource Technology, 317, 124007.
  • Chaiwong K., Kiatsiriroat T., Vorayos N., Thararax C. 2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–6.
  • Yuan T., Tahmasebi A., Yu J. 2015. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333–41.
  • Pan P., Hu C., Yang W., Li Y., Dong L., Zhu L. 2010. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101, 4593–9.
  • Dai M., Yu Z., Fang S., Ma X. 2019. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, 192, 1–10.
  • Jena U., Das K. C. 2011. Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae. Energy & Fuels, 25, 5472–82.

Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS

Year 2020, Volume: 7 Issue: 4, 107 - 114, 31.12.2020
https://doi.org/10.31593/ijeat.772113

Abstract

Pyrolysis of Spirulina sp. Microalgae was carried out in a semi-batch glass reactor system. Effect of temperature on the yields of pyrolytic products (gaseous, liquid and solid residue) and chemical composition of the liquid products were investigated. All experiments were performed in 25 mL/min nitrogen atmosphere with 15 g feedstock which was dry and powder form of Spirulina. Temperature was varied from 470 to 620 °C with 50 °C break by utilizing PID controller which was setted 10 °C/min heating rate. The aqueous phase and bio-oil (organic phase) of the liquid products were characterized by GC-MS. Maximum yields of bio-oil and aqueous phase were obtained approximately as 30 wt. % at 520 °C and as 20 wt. % at 470 °C. It was detected that bio-oil composed of aliphatic and cyclic hydrocarbons (such as toluene and heptadecane), oxygenated components (such as phenol, o-cresol and nonadecanol), nitrogenous components (such as hexadecaneamide and 3-Methyl-1H-indole). Unlike bio-oil, hydrocarbons like toluene, ethyl benzene, styrene and alkanes were not detected in aqueous phase.

Project Number

17L0443014

References

  • Kothari R., Tyagi V. V., Pathak A. 2010. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, 14, 3164–70.
  • Wu X., Wu Y., Wu K., Chen Y., Hu H., Yang M. 2015. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene. Bioresource Technology, 192, 522–8.
  • Kan T., Strezov V., Evans T. J. 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–40. https://doi.org/10.1016/j.rser.2015.12.185.
  • Jin H., Hanif M.U., Capareda S., Chang Z., Huang H., Ai Y. 2016. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4, 365–72.
  • Demirbas A. 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49, 2106–16.
  • Rodionova M. V., Poudyal R. S., Tiwari I., Voloshin R. A., Zharmukhamedov S. K., Nam H. G. 2017. Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy, 42, 8450–61.
  • Chen W., Li K., Xia M., Yang H., Chen Y., Chen X. 2018. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy, 157, 472–82.
  • Gómez Millán G., Hellsten S., Llorca J., Luque R., Sixta H., Balu A. M. 2019. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 11, 2022–42.
  • Tian M., Zhu Y., Zhang D., Wang M., Chen Y., Yang Y. 2019. Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-Fenton process. Nano Energy, 64, 103940.
  • Hossain S. M. Z. 2019. Biochemical Conversion of Microalgae Biomass into Biofuel. Chemical Engineering Technology, 42, 2594–607.
  • Marcon N. S., Colet R., Bibilio D., Graboski A. M., Steffens C., Rosa C. D. 2019. Production of Ethyl Esters by Direct Transesterification of Microalga Biomass Using Propane as Pressurized Fluid. Applied Biochemistry and Biotechnology, 187, 1285–99.
  • Panwar N. L., Kothari R., Tyagi V. V. 2012. Thermo chemical conversion of biomass - Eco friendly energy routes. Renewable and Sustainable Energy Reviews, 16, 1801–16.
  • Luque R., Menéndez J. A., Arenillas A., Cot J. 2012. Microwave-assisted pyrolysis of biomass feedstocks: The way forward?. Energy & Environmental Science, 5, 5481–8.
  • Abhijeet P., Swagathnath G., Rangabhashiyam S., Asok Rajkumar M., Balasubramanian P. 2020. Prediction of pyrolytic product composition and yield for various grass biomass feedstocks. Biomass Conversion and Biorefinery, 10, 663–74.
  • Akhtar J., Saidina Amin N. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16, 5101–9.
  • Moreira D., Pires J. C. M. 2016. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215, 371–9.
  • Li Y., Horsman M., Wu N., Lan C. Q., Dubois-Calero N. 2008. Biofuels from Microalgae. Biotechnology Progress, 24, 815-20.
  • Huang Y., Chen Y., Xie J., Liu H., Yin X., Wu C. 2016. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp.. Fuel, 183, 9–19.
  • Chaiwong K., Kiatsiriroat T., Vorayos N., Thararax C. 2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–6.
  • Chen W., Yang H., Chen Y., Xia M., Yang Z., Wang X. 2017. Algae pyrolytic poly-generation: Influence of component difference and temperature on products characteristics. Energy, 131, 1–12.
  • Andrade L. A, Batista F. R. X., Lira T. S., Barrozo M. A. S., Vieira L. G. M. 2017. Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renewable Energy, 119, 731–40.
  • Anand V., Sunjeev V., Vinu R. 2016. Catalytic fast pyrolysis of Arthrospira platensis (spirulina) algae using zeolites. Journal of Analytical and Applied Pyrolysis, 118, 298–307.
  • Costa J. A. V., Freitas B. C. B., Rosa G. M., Moraes L., Morais M. G., Mitchell B. G. 2019. Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology, 292, 121946.
  • Li J., Qiao Y., Zong P., Wang C., Tian Y., Qin S. 2019. Thermogravimetric Analysis and Isoconversional Kinetic Study of Biomass Pyrolysis Derived from Land, Coastal Zone, and Marine. Energy & Fuels, 33, 3299–310.
  • Chagas B. M. E., Dorado C., Serapiglia M. J., Mullen C. A., Boateng A. A., Melo M. A. F. 2016. Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel, 179, 124–34.
  • Vasudev V., Ku X., Lin J. 2020. Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis. Bioresource Technology, 317, 124007.
  • Chaiwong K., Kiatsiriroat T., Vorayos N., Thararax C. 2013. Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–6.
  • Yuan T., Tahmasebi A., Yu J. 2015. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333–41.
  • Pan P., Hu C., Yang W., Li Y., Dong L., Zhu L. 2010. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101, 4593–9.
  • Dai M., Yu Z., Fang S., Ma X. 2019. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, 192, 1–10.
  • Jena U., Das K. C. 2011. Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae. Energy & Fuels, 25, 5472–82.
There are 31 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Gamze Özçakır 0000-0003-0357-4176

Ali Karaduman 0000-0003-1061-8288

Project Number 17L0443014
Publication Date December 31, 2020
Submission Date July 20, 2020
Acceptance Date October 27, 2020
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

APA Özçakır, G., & Karaduman, A. (2020). Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. International Journal of Energy Applications and Technologies, 7(4), 107-114. https://doi.org/10.31593/ijeat.772113
AMA Özçakır G, Karaduman A. Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. IJEAT. December 2020;7(4):107-114. doi:10.31593/ijeat.772113
Chicago Özçakır, Gamze, and Ali Karaduman. “Detecting Chemicals With High Yield in Pyrolytic Liquid of Spirulina Sp. Microalgae via GC-MS”. International Journal of Energy Applications and Technologies 7, no. 4 (December 2020): 107-14. https://doi.org/10.31593/ijeat.772113.
EndNote Özçakır G, Karaduman A (December 1, 2020) Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. International Journal of Energy Applications and Technologies 7 4 107–114.
IEEE G. Özçakır and A. Karaduman, “Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS”, IJEAT, vol. 7, no. 4, pp. 107–114, 2020, doi: 10.31593/ijeat.772113.
ISNAD Özçakır, Gamze - Karaduman, Ali. “Detecting Chemicals With High Yield in Pyrolytic Liquid of Spirulina Sp. Microalgae via GC-MS”. International Journal of Energy Applications and Technologies 7/4 (December 2020), 107-114. https://doi.org/10.31593/ijeat.772113.
JAMA Özçakır G, Karaduman A. Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. IJEAT. 2020;7:107–114.
MLA Özçakır, Gamze and Ali Karaduman. “Detecting Chemicals With High Yield in Pyrolytic Liquid of Spirulina Sp. Microalgae via GC-MS”. International Journal of Energy Applications and Technologies, vol. 7, no. 4, 2020, pp. 107-14, doi:10.31593/ijeat.772113.
Vancouver Özçakır G, Karaduman A. Detecting chemicals with high yield in pyrolytic liquid of spirulina sp. microalgae via GC-MS. IJEAT. 2020;7(4):107-14.