Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 4, 115 - 119, 31.12.2020
https://doi.org/10.31593/ijeat.772180

Abstract

References

  • Sun, Z., Wang, Q., Xie, Z., Liu, S., Su, D. and Cui, Q. 2019. Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system. Energy, 170, 1170-1180. Doi: 10.1016/j.energy.2018.12.055
  • Gholamian, E., Hanafizadeh, P. and Ahmadi, P. 2018. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl. Therm. Eng., 137, 689-699. Doi: 10.1016/j.applthermaleng. 2018.03.055
  • Kilicarslan, A. and Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers. Manage., 51 (12), 2947-2954. Doi:10.1016 /j.enconman.2010.06.037
  • Roy, R. and Mandal, B.K. 2018. Exergy analysis of cascade refrigeration system working with refrigerant pairs R41-R404A and R41-R161. In IOP Conf. Ser., Mater. Sci. Eng., 377 (1), 012036. Doi:10.1088/1757-899X/377/1/012036
  • Kanoğlu, M. 2002. Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. Int. J. Energy Res., 26 (8),763-774. Doi:10.1002/er.814
  • Dopazo, J.A., Fernández-Seara, J., Sieres, J. and Uhía, F.J. 2009. Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures, Appl. Therm. Eng., 29 (8-9), 1577-1583. Doi: 10.1016/j.applthermaleng.2008.07.006
  • Rezayan, O. and Behbahaninia, A. 2011. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36 (2), 888-895. Doi: 10.1016/j.energy.2010.12.022
  • Lee, T.S., Liu, C.H. and Chen T.W. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems, Int. J. Refrig., 29 (7), 1100-1108. Doi: 10.1016/j.ijrefrig.2006.03.003
  • Getu, H.M. and Bansal, P.K. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system, Int. J. Refrig., 31 (1), 45-54. Doi: 10.1016 /j.ijrefrig.2007.06.014
  • Bingming, W., Huagen, W., Jianfeng, L. and Ziwen, X. 2008. Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor. Int. J. Refrig., 32 (6), 1358-1365. Doi: 10.1016/j.ijrefrig.2009.03.008
  • Dopazo, J.A. and Fernández-Seara, J. 2010. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. Int. J. Refrig., 34 (1), 257-267. Doi: 10.1016/j.ijrefrig.2010.07.010
  • Cabello, R., Sánchez, D., Llopis, R., Catalán, J., Nebot-Andrés, L. and Torrella, E. 2017. Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants. Appl. Therm. Eng., 110, 972-984. Doi: 10.1016/j.applthermaleng.2016.09.010
  • Eini, S., Shahhosseini, H., Delgarm, N., Lee, M. and Bahadori, A. 2016. Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental and inherent safety analysis, Appl. Therm. Eng., 107, 804-817. Doi: 10.1016/j.applthermaleng. 2016.07.013
  • Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., Nebot-Andrés, L. and Catalán-Gil, J. 2016. Effects caused by the internal heat exchanger at the low temperature cycle a cascade refrigeration plant. Appl. Therm. Eng., 103, 1077-1086. Doi: 10.1016/j.applthermaleng .2016.04.075
  • Mosaffa, A.H., Farshi, L.G., Infante Ferreira, C.A. and Rosen, M.A. 2016. Exergoeconomic and environmental analyses of CO2 /NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Convers. Manage., 117, 442-453. Doi: 10.1016 /j.enconman.2016.03.053
  • Queiroz, M.V.A., Panato, V.H., Antunes, A.H.P., Parise, J.A.R. and Bandarra Filho, E.P. 2016. Experimental comparison of a cascade refrigeration system operating with R744/R134a and R744/R404a. 16th International Refrigeration and Air Conditioning Conference (July 11 -14 Purdue Conferences). USA. 1785-1795. http://docs.lib.purdue.edu/iracc/1785
  • Dikmen, E., Şahin, A.Ş., Deveci, Ö.İ. and Akdağ, E. 2020. GWP Değeri Düşük Soğutucu Akışkanların Kullanıldığı Kaskad Soğutma Sisteminin Karşılaştırmalı Performans Analizi. ECSJE, 7(1), 338-345. Doi: /10.31202/ecjse. 630262
  • Engineering Equation Solver (EES) software, 10.614 Academic version, 2019.

Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples

Year 2020, Volume: 7 Issue: 4, 115 - 119, 31.12.2020
https://doi.org/10.31593/ijeat.772180

Abstract

In this work, a comparative exergy analysis of cascade cooling system working with alternative refrigerant couples has been carried out. In study; R454C and R-744 as low temperature cycle (LTC) refrigerant and R1234ze, R1234yf and R717 as high temperature cycle (HTC) refrigerant were used. The refrigerants used in the study have zero ODP and low GWP values. Exergy analysis was carried out to investigate the effect to exergy efficiency of operation parameters in cascade cooling system. The exergy efficiency values of the cascade cooling system decreases with increasing evaporator temperature for all refrigerant couples. The exergy efficiency values of the cascade cooling system decreases with increasing the condenser temperature. Obtained results show that in all cases, the refrigerant couple R454C/R717 has the highest exergy efficiency.

References

  • Sun, Z., Wang, Q., Xie, Z., Liu, S., Su, D. and Cui, Q. 2019. Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system. Energy, 170, 1170-1180. Doi: 10.1016/j.energy.2018.12.055
  • Gholamian, E., Hanafizadeh, P. and Ahmadi, P. 2018. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl. Therm. Eng., 137, 689-699. Doi: 10.1016/j.applthermaleng. 2018.03.055
  • Kilicarslan, A. and Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers. Manage., 51 (12), 2947-2954. Doi:10.1016 /j.enconman.2010.06.037
  • Roy, R. and Mandal, B.K. 2018. Exergy analysis of cascade refrigeration system working with refrigerant pairs R41-R404A and R41-R161. In IOP Conf. Ser., Mater. Sci. Eng., 377 (1), 012036. Doi:10.1088/1757-899X/377/1/012036
  • Kanoğlu, M. 2002. Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. Int. J. Energy Res., 26 (8),763-774. Doi:10.1002/er.814
  • Dopazo, J.A., Fernández-Seara, J., Sieres, J. and Uhía, F.J. 2009. Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures, Appl. Therm. Eng., 29 (8-9), 1577-1583. Doi: 10.1016/j.applthermaleng.2008.07.006
  • Rezayan, O. and Behbahaninia, A. 2011. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36 (2), 888-895. Doi: 10.1016/j.energy.2010.12.022
  • Lee, T.S., Liu, C.H. and Chen T.W. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems, Int. J. Refrig., 29 (7), 1100-1108. Doi: 10.1016/j.ijrefrig.2006.03.003
  • Getu, H.M. and Bansal, P.K. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system, Int. J. Refrig., 31 (1), 45-54. Doi: 10.1016 /j.ijrefrig.2007.06.014
  • Bingming, W., Huagen, W., Jianfeng, L. and Ziwen, X. 2008. Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor. Int. J. Refrig., 32 (6), 1358-1365. Doi: 10.1016/j.ijrefrig.2009.03.008
  • Dopazo, J.A. and Fernández-Seara, J. 2010. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. Int. J. Refrig., 34 (1), 257-267. Doi: 10.1016/j.ijrefrig.2010.07.010
  • Cabello, R., Sánchez, D., Llopis, R., Catalán, J., Nebot-Andrés, L. and Torrella, E. 2017. Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants. Appl. Therm. Eng., 110, 972-984. Doi: 10.1016/j.applthermaleng.2016.09.010
  • Eini, S., Shahhosseini, H., Delgarm, N., Lee, M. and Bahadori, A. 2016. Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental and inherent safety analysis, Appl. Therm. Eng., 107, 804-817. Doi: 10.1016/j.applthermaleng. 2016.07.013
  • Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., Nebot-Andrés, L. and Catalán-Gil, J. 2016. Effects caused by the internal heat exchanger at the low temperature cycle a cascade refrigeration plant. Appl. Therm. Eng., 103, 1077-1086. Doi: 10.1016/j.applthermaleng .2016.04.075
  • Mosaffa, A.H., Farshi, L.G., Infante Ferreira, C.A. and Rosen, M.A. 2016. Exergoeconomic and environmental analyses of CO2 /NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Convers. Manage., 117, 442-453. Doi: 10.1016 /j.enconman.2016.03.053
  • Queiroz, M.V.A., Panato, V.H., Antunes, A.H.P., Parise, J.A.R. and Bandarra Filho, E.P. 2016. Experimental comparison of a cascade refrigeration system operating with R744/R134a and R744/R404a. 16th International Refrigeration and Air Conditioning Conference (July 11 -14 Purdue Conferences). USA. 1785-1795. http://docs.lib.purdue.edu/iracc/1785
  • Dikmen, E., Şahin, A.Ş., Deveci, Ö.İ. and Akdağ, E. 2020. GWP Değeri Düşük Soğutucu Akışkanların Kullanıldığı Kaskad Soğutma Sisteminin Karşılaştırmalı Performans Analizi. ECSJE, 7(1), 338-345. Doi: /10.31202/ecjse. 630262
  • Engineering Equation Solver (EES) software, 10.614 Academic version, 2019.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Erkan Dikmen 0000-0002-6804-8612

Arzu Şencan Şahin 0000-0001-8519-4788

Publication Date December 31, 2020
Submission Date July 21, 2020
Acceptance Date October 12, 2020
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

APA Dikmen, E., & Şencan Şahin, A. (2020). Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples. International Journal of Energy Applications and Technologies, 7(4), 115-119. https://doi.org/10.31593/ijeat.772180
AMA Dikmen E, Şencan Şahin A. Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples. IJEAT. December 2020;7(4):115-119. doi:10.31593/ijeat.772180
Chicago Dikmen, Erkan, and Arzu Şencan Şahin. “Comparative Exergy Analysis of the Cascade Cooling System for Alternative Refrigerant Couples”. International Journal of Energy Applications and Technologies 7, no. 4 (December 2020): 115-19. https://doi.org/10.31593/ijeat.772180.
EndNote Dikmen E, Şencan Şahin A (December 1, 2020) Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples. International Journal of Energy Applications and Technologies 7 4 115–119.
IEEE E. Dikmen and A. Şencan Şahin, “Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples”, IJEAT, vol. 7, no. 4, pp. 115–119, 2020, doi: 10.31593/ijeat.772180.
ISNAD Dikmen, Erkan - Şencan Şahin, Arzu. “Comparative Exergy Analysis of the Cascade Cooling System for Alternative Refrigerant Couples”. International Journal of Energy Applications and Technologies 7/4 (December 2020), 115-119. https://doi.org/10.31593/ijeat.772180.
JAMA Dikmen E, Şencan Şahin A. Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples. IJEAT. 2020;7:115–119.
MLA Dikmen, Erkan and Arzu Şencan Şahin. “Comparative Exergy Analysis of the Cascade Cooling System for Alternative Refrigerant Couples”. International Journal of Energy Applications and Technologies, vol. 7, no. 4, 2020, pp. 115-9, doi:10.31593/ijeat.772180.
Vancouver Dikmen E, Şencan Şahin A. Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples. IJEAT. 2020;7(4):115-9.