Research Article
BibTex RIS Cite

Fracture energy comparison of aluminum and boron composites for fuel cell end plates

Year 2020, Volume: 7 Issue: 4, 149 - 153, 31.12.2020
https://doi.org/10.31593/ijeat.795403

Abstract

Fuel cells have become an attractive choice because they do not cause environmental and noise pollution. Additionally, they do not contain any moving parts and have higher efficiency than fossil fuels. Therefore, improving the capability of fuel cells helps to provide clean energy. Among fuel cells, the proton exchange membrane fuel cell (PEMFC) includes five main parts that are end plate, membrane, gas diffusion layer (GDL), catalyst layer (CL), bipolar flow plate (BFP). End plates hold PEMFC parts together securely. They should have high mechanical strength and low density properties. Therefore, the choice of materials for the PEMFC endplate is important. The calculated values of fracture energy show quantitatively how much energy must be placed in the sample to create the fracture surface. In this study, a finite element study was performed to understand the fracture behavior of cracks in the selected materials under different loading angles. The results revealed that the total fracture energy of aluminum was higher than boron-aluminum 50 and boron-aluminum 65 composites.

References

  • Bayrak Z.U., Gençoğlu M.T. (27-30 June 2010) Mathematical Models of PEM Fuel Cells 5th International Ege Energy Symposium and Exhibition (IEESE-5) Pamukkale University, Denizli, Turkey
  • Giorgi, L., & Leccese, F. (2013). Fuel cells: technologies and applications. The Open Fuel Cells Journal, 6(1). Haile, S. M. (2003). Fuel cell materials and components. Acta Materialia, 51(19), 5981-6000.
  • Wee, J. H. (2007). Applications of proton exchange membrane fuel cell systems. Renewable and sustainable energy reviews, 11(8), 1720-1738.
  • Gencoglu, M. T., & Ural, Z. (2009). Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy, 34(12), 5242-5248.
  • Van Biert, L., Godjevac, M., Visser, K., & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345-364.
  • Baroutaji A., Carton J.G., Sajjia M., Olabi A.G. (October 2015) Materials in PEM Fuel Cells Materials Science and Materials Engineering DOI: 10.1016/B978-0-12-803581-8.04006-6
  • Tamilarasan, U., Karunamoorthy, L., & Palanikumar, K. (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Materials Research, 18(5), 1029-1037.
  • Yu, H. N., Kim, S. S., & Do Suh, J. (2010). Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell). Composite Structures, 92(6), 1498-1503.
  • Hermann, A., Chaudhuri, T., & Spagnol, P. (2005). Bipolar plates for PEM fuel cells: A review. International journal of hydrogen Energy, 30(12), 1297-1302.
  • Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F. N., Durrant, A., ... & Olabi, A. G. (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews, 111, 236-260.
  • Choupani, N. (2008). Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Materials Science and Engineering: A, 478(1-2), 229-242.
  • Abadi R.H., Torun A.R., Fard A.M.Z., Choupani N. (2020) Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture) Journal of Adhesion Science and Technology https://doi.org/10.1080/01694243.2019.1674102
  • Kumar, A., & Reddy, R. G. (2004). Materials and design development for bipolar/end plates in fuel cells. Journal of Power Sources, 129(1), 62-67.
  • Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sun, H. Y., Kim, K. H., & Song, T. W. (2008). Fuel cell end plates: a review. International Journal of Precision Engineering and Manufacturing, 9(1), 39-46.
  • Asghari, S., Shahsamandi, M. H., & Khorasani, M. A. (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International journal of hydrogen energy, 35(17), 9291-9297.
  • Wang, X., Song, Y., & Zhang, B. (2008). Experimental study on clamping pressure distribution in PEM fuel cells. Journal of Power Sources, 179(1), 305-309.
  • Hwang, J. J., Chang, W. R., Weng, F. B., Su, A., & Chen, C. O. K. (2008). Development of a small vehicular PEM fuel cell system. International Journal of Hydrogen Energy, 33(14), 3801-3807.
  • Pozio, A., Silva, R. F., De Francesco, M., & Giorgi, L. (2003). Nafion degradation in PEFCs from end plate iron contamination. Electrochimica acta, 48(11), 1543-1549.
  • Bhat M.A., Shaikh A. A. (2014) FEA simulation and geometric calibration of Arcan fixture for butterfly specimen of RP material International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-10, October 2014.
  • Choupani N. (2006) Mixed Mode I/II Interlaminar Fracture of CF /PEI Composite Material Journal of Aerospace Science and Technology JAST, Vol. 3, No. 4, pp185-193. Choupani, N. (2009). Characterization of fracture in adhesively bonded double-lap joints. International Journal of Adhesion and Adhesives, 29(8), 761-773.
  • Salam, S. S., Mehat, N. M., & Kamaruddin, S. (2019, August). Optimization of Laminated Composites Characteristics via integration of Chamis Equation, Taguchi method and Principal Component Analysis. In IOP Conference Series: Materials Science and Engineering (Vol. 551, No. 1, p. 012110). IOP Publishing.
Year 2020, Volume: 7 Issue: 4, 149 - 153, 31.12.2020
https://doi.org/10.31593/ijeat.795403

Abstract

References

  • Bayrak Z.U., Gençoğlu M.T. (27-30 June 2010) Mathematical Models of PEM Fuel Cells 5th International Ege Energy Symposium and Exhibition (IEESE-5) Pamukkale University, Denizli, Turkey
  • Giorgi, L., & Leccese, F. (2013). Fuel cells: technologies and applications. The Open Fuel Cells Journal, 6(1). Haile, S. M. (2003). Fuel cell materials and components. Acta Materialia, 51(19), 5981-6000.
  • Wee, J. H. (2007). Applications of proton exchange membrane fuel cell systems. Renewable and sustainable energy reviews, 11(8), 1720-1738.
  • Gencoglu, M. T., & Ural, Z. (2009). Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy, 34(12), 5242-5248.
  • Van Biert, L., Godjevac, M., Visser, K., & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345-364.
  • Baroutaji A., Carton J.G., Sajjia M., Olabi A.G. (October 2015) Materials in PEM Fuel Cells Materials Science and Materials Engineering DOI: 10.1016/B978-0-12-803581-8.04006-6
  • Tamilarasan, U., Karunamoorthy, L., & Palanikumar, K. (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Materials Research, 18(5), 1029-1037.
  • Yu, H. N., Kim, S. S., & Do Suh, J. (2010). Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell). Composite Structures, 92(6), 1498-1503.
  • Hermann, A., Chaudhuri, T., & Spagnol, P. (2005). Bipolar plates for PEM fuel cells: A review. International journal of hydrogen Energy, 30(12), 1297-1302.
  • Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F. N., Durrant, A., ... & Olabi, A. G. (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews, 111, 236-260.
  • Choupani, N. (2008). Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Materials Science and Engineering: A, 478(1-2), 229-242.
  • Abadi R.H., Torun A.R., Fard A.M.Z., Choupani N. (2020) Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture) Journal of Adhesion Science and Technology https://doi.org/10.1080/01694243.2019.1674102
  • Kumar, A., & Reddy, R. G. (2004). Materials and design development for bipolar/end plates in fuel cells. Journal of Power Sources, 129(1), 62-67.
  • Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sun, H. Y., Kim, K. H., & Song, T. W. (2008). Fuel cell end plates: a review. International Journal of Precision Engineering and Manufacturing, 9(1), 39-46.
  • Asghari, S., Shahsamandi, M. H., & Khorasani, M. A. (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International journal of hydrogen energy, 35(17), 9291-9297.
  • Wang, X., Song, Y., & Zhang, B. (2008). Experimental study on clamping pressure distribution in PEM fuel cells. Journal of Power Sources, 179(1), 305-309.
  • Hwang, J. J., Chang, W. R., Weng, F. B., Su, A., & Chen, C. O. K. (2008). Development of a small vehicular PEM fuel cell system. International Journal of Hydrogen Energy, 33(14), 3801-3807.
  • Pozio, A., Silva, R. F., De Francesco, M., & Giorgi, L. (2003). Nafion degradation in PEFCs from end plate iron contamination. Electrochimica acta, 48(11), 1543-1549.
  • Bhat M.A., Shaikh A. A. (2014) FEA simulation and geometric calibration of Arcan fixture for butterfly specimen of RP material International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-10, October 2014.
  • Choupani N. (2006) Mixed Mode I/II Interlaminar Fracture of CF /PEI Composite Material Journal of Aerospace Science and Technology JAST, Vol. 3, No. 4, pp185-193. Choupani, N. (2009). Characterization of fracture in adhesively bonded double-lap joints. International Journal of Adhesion and Adhesives, 29(8), 761-773.
  • Salam, S. S., Mehat, N. M., & Kamaruddin, S. (2019, August). Optimization of Laminated Composites Characteristics via integration of Chamis Equation, Taguchi method and Principal Component Analysis. In IOP Conference Series: Materials Science and Engineering (Vol. 551, No. 1, p. 012110). IOP Publishing.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Adem Avcu 0000-0001-9981-5311

Publication Date December 31, 2020
Submission Date September 19, 2020
Acceptance Date December 1, 2020
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

APA Avcu, A. (2020). Fracture energy comparison of aluminum and boron composites for fuel cell end plates. International Journal of Energy Applications and Technologies, 7(4), 149-153. https://doi.org/10.31593/ijeat.795403
AMA Avcu A. Fracture energy comparison of aluminum and boron composites for fuel cell end plates. IJEAT. December 2020;7(4):149-153. doi:10.31593/ijeat.795403
Chicago Avcu, Adem. “Fracture Energy Comparison of Aluminum and Boron Composites for Fuel Cell End Plates”. International Journal of Energy Applications and Technologies 7, no. 4 (December 2020): 149-53. https://doi.org/10.31593/ijeat.795403.
EndNote Avcu A (December 1, 2020) Fracture energy comparison of aluminum and boron composites for fuel cell end plates. International Journal of Energy Applications and Technologies 7 4 149–153.
IEEE A. Avcu, “Fracture energy comparison of aluminum and boron composites for fuel cell end plates”, IJEAT, vol. 7, no. 4, pp. 149–153, 2020, doi: 10.31593/ijeat.795403.
ISNAD Avcu, Adem. “Fracture Energy Comparison of Aluminum and Boron Composites for Fuel Cell End Plates”. International Journal of Energy Applications and Technologies 7/4 (December 2020), 149-153. https://doi.org/10.31593/ijeat.795403.
JAMA Avcu A. Fracture energy comparison of aluminum and boron composites for fuel cell end plates. IJEAT. 2020;7:149–153.
MLA Avcu, Adem. “Fracture Energy Comparison of Aluminum and Boron Composites for Fuel Cell End Plates”. International Journal of Energy Applications and Technologies, vol. 7, no. 4, 2020, pp. 149-53, doi:10.31593/ijeat.795403.
Vancouver Avcu A. Fracture energy comparison of aluminum and boron composites for fuel cell end plates. IJEAT. 2020;7(4):149-53.