Research Article
PDF EndNote BibTex RIS Cite

Year 2021, Volume 8, Issue 1, 27 - 32, 31.03.2021
https://doi.org/10.31593/ijeat.804913

Abstract

References

  • International Energy Agency Report, 2017. www.iea.org/publications/freepublications/ (19 September2019).
  • Deborah, P., Francesca, V. and Giuseppe, G. 2015. Analysis of the environmental impact of a biomass plant for the production of bioenergy. Renewable and Sustainable Energy Reviews, 51, 634-647.
  • Eghtedaei, R., Mirhosseini, S. A., Esfahani, M. J., Foroughi, A. and Akbari, H. 2017. Co-gasification of biomass and municipal solid waste for hydrogen-rich gas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1491-1496.
  • Xiang, X., Gong, G., Shi, Y., Cai, Y. and Wang, C. 2018. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renewable and Sustainable Energy Reviews, 82, 2768-2778.
  • Mahapatra, S. and Dasappa, S. 2014. Influence of surface area to volume ratio of fuel particles on gasification process in a fixed bed. Energy for Sustainable Development, 19, 122-129.
  • Panwar, N. L., Kothari, R. and Tyagi, V. V. 2012. Thermo chemical conversion of biomass – ecofriendly energy routes. Renewable and Sustainable Energy Reviews, 16(4), 1801-1816.
  • Sansaniwal, S. K., Pal, K., Rosen, M. A. and Tyagi, S. K. 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
  • Saxena, R. C., Seal, D., Kumar, S. and Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • Son, Y. I., Yoon, S. J., Kim, Y. K. and Lee, J. G. 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass and Bioenergy, 35(10), 4215-4220.
  • Chang, A. C., Chang, H. F., Lin, F. J., Lin, K. H. and Chen, C. H. 2011. Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 36(21), 14252-14260.
  • Dasappa, S., Subbukrishna, D. N., Suresh, K. C., Paul, P. J. and Prabhu, G. S. 2011. Operational experience on a grid connected 100 kWe biomass gasification power plant in Karnataka, India. Energy for sustainable development, 15(3), 231-239.
  • Jimenez, O., Curbelo, A. and Suarez, Y. 2012. Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98-102.
  • Vera, D., Jurado, F., Margaritis, N. K. and Grammelis, P. 2014. Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy for Sustainable Development, 23, 247-257.
  • Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A. 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347.
  • Wang, Y. and Zhang, S. 2017. Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B: Economics, Planning, and Policy, 12(11), 1022-1029.
  • E.Tool Box, Fuels higher and lower calorific values, 2003.www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html. (13 September 2019.)
  • Sharma, S. and Sheth, P. N. 2016. Air–steam biomass gasification: experiments, modeling and simulation. Energy conversion and management, 110, 307-318.
  • Zhao, L. and Lu, Y. 2018. Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: A CFD-DEM study. The Journal of Supercritical Fluids, 131, 26-36.
  • Cui, H. and Grace, J. R. 2007. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62(1-2), 45-55.
  • Wang, S., Luo, K., Hu, C., Sun, L. and Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 333, 304-316.
  • Behainne, J. J. R. and Martinez, J. D. 2014. Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy for Sustainable Development, 18, 75-82.
  • Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y. and Zhu, J.X., 2004. An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95-101.
  • Campoy, M., Gomez-Barea, A., Vidal, F.B. and Ollero, P., 2009. Air–steam gasification of biomass in a fluidised bed: process optimisation by enriched air. Fuel Processing Technology, 90(5), 677-685.
  • Gil-Lalaguna, N., Sánchez, J.L., Murillo, M.B., Rodríguez, E. and Gea, G., 2014. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chemical Engineering Journal, 248, 373-382.
  • Yan, L., Li, Y., Yang, B., Farahani, M.R. and Gao, W., 2018. Air-steam gasification of municipal solid wastes (MSWs) for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(5), 538-543.
  • Kuhe, A. and Aliyu, S.J., 2015. Gasification of' Loose'Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development, 4(2), 125-130.
  • Worldatlas, Where are Peanuts Grown?, 2019. https://www.worldatlas.com/articles/top-peanut-groundnut-producing-countries.html. (19 September 2019.)
  • Jarungthammachote, S. and Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32(9),1660-1669.
  • Costa, M., Massarotti, N., Cappuccio, G., Chang, C.T., Shiue, A., Lin, C.J. and Wang, Y.T., 2014. Modeling of syngas production from biomass energy resources available in Taiwan. Chemical Engineering, 37, 343-348.
  • Xi, W., Shi, Z., Farahani, M.R. and Gao, W., 2017. Computer simulation of coal gasification in a full scale plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8), 768-774.
  • La Villetta, M., Costa, M. and Massarotti, N., 2017. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71-88.
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A. and Uysal, B.Z., 2012. A parametric study on coal gasification for the production of syngas. Chemical Papers, 66(7), 677-683.
  • Kocer, A., Yaka, I.F. and Gungor, A., 2017. Evaluation of greenhouse residues gasification performance in hydrogen production. International Journal of Hydrogen Energy, 42(36), 23244-23249.
  • Sansaniwal, S.K., Rosen, M.A. and Tyagi, S.K., 2017. Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23-43.
  • Groppi, G., Tronconi, E., Forzatti, P. and Berg, M., 2000. Mathematical modelling of catalytic combustors fuelled by gasified biomasses. Catalysis Today, 59(1-2), 151-162.
  • Gungor, A. and Yildirim, U., 2013. Two dimensional numerical computation of a circulating fluidized bed biomass gasifier. Computers & Chemical Engineering, 48, 234-250.
  • Natarajan, E. and Baskara Sethupathy, S., 2015. Gasification of groundnut shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(9), 980-986.
  • Nisamaneenate, J., Atong, D., Sornkade, P. and Sricharoenchaikul, V., 2015. Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renewable Energy, 79, 45-50.
  • Alzate, C.A., Chejne, F., Valdés, C.F., Berrio, A., De La Cruz, J. and Londoño, C.A., 2009. CO-gasification of pelletized wood residues. Fuel, 88(3), 437-445.
  • Kaushal, P., Pröll, T. and Hofbauer, H., 2007. Model development and validation: co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 86(17-18), 2687-2695.
  • Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M. and Subramanian, P., 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179-186.
  • Subbaiah, B.S., Murugan, D.K., Deenadayalan, D.B. and Dhamodharan, M.I., 2014. Gasification of biomass using fluidized bed. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 8995-9002.

Hydrogen production from groundnut shell via circulating fluidized bed technology

Year 2021, Volume 8, Issue 1, 27 - 32, 31.03.2021
https://doi.org/10.31593/ijeat.804913

Abstract

In this study, hydrogen production performances of groundnut shells in a circulating fluidized bed gasifier is evaluated by employing a previously developed and validated model. Basically, we simulate a circulating fluidized bed gasification system that is connected to a water-gas shift reactor, for hydrogen purification with the gasifier temperature of 1150 K. We find that the amount of hydrogen gas produced from circulating fluidized bed gasification of groundnut shells increases from 49.25 kmol to 68.83 kmol (per 1000 kg of raw groundnut shells) when the gasifier is integrated with water-gas shift reactor. We observe that it is possible to obtain a high yield of hydrogen gas from the gasification of groundnut shells. Therefore, we conclude that the groundnut shell is a remarkable feedstock for bioenergy.

References

  • International Energy Agency Report, 2017. www.iea.org/publications/freepublications/ (19 September2019).
  • Deborah, P., Francesca, V. and Giuseppe, G. 2015. Analysis of the environmental impact of a biomass plant for the production of bioenergy. Renewable and Sustainable Energy Reviews, 51, 634-647.
  • Eghtedaei, R., Mirhosseini, S. A., Esfahani, M. J., Foroughi, A. and Akbari, H. 2017. Co-gasification of biomass and municipal solid waste for hydrogen-rich gas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1491-1496.
  • Xiang, X., Gong, G., Shi, Y., Cai, Y. and Wang, C. 2018. Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renewable and Sustainable Energy Reviews, 82, 2768-2778.
  • Mahapatra, S. and Dasappa, S. 2014. Influence of surface area to volume ratio of fuel particles on gasification process in a fixed bed. Energy for Sustainable Development, 19, 122-129.
  • Panwar, N. L., Kothari, R. and Tyagi, V. V. 2012. Thermo chemical conversion of biomass – ecofriendly energy routes. Renewable and Sustainable Energy Reviews, 16(4), 1801-1816.
  • Sansaniwal, S. K., Pal, K., Rosen, M. A. and Tyagi, S. K. 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
  • Saxena, R. C., Seal, D., Kumar, S. and Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • Son, Y. I., Yoon, S. J., Kim, Y. K. and Lee, J. G. 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass and Bioenergy, 35(10), 4215-4220.
  • Chang, A. C., Chang, H. F., Lin, F. J., Lin, K. H. and Chen, C. H. 2011. Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 36(21), 14252-14260.
  • Dasappa, S., Subbukrishna, D. N., Suresh, K. C., Paul, P. J. and Prabhu, G. S. 2011. Operational experience on a grid connected 100 kWe biomass gasification power plant in Karnataka, India. Energy for sustainable development, 15(3), 231-239.
  • Jimenez, O., Curbelo, A. and Suarez, Y. 2012. Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. Energy for Sustainable Development, 16(1), 98-102.
  • Vera, D., Jurado, F., Margaritis, N. K. and Grammelis, P. 2014. Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy for Sustainable Development, 23, 247-257.
  • Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A. and Khasri, A. 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347.
  • Wang, Y. and Zhang, S. 2017. Economic assessment of selected hydrogen production methods: A review. Energy Sources, Part B: Economics, Planning, and Policy, 12(11), 1022-1029.
  • E.Tool Box, Fuels higher and lower calorific values, 2003.www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html. (13 September 2019.)
  • Sharma, S. and Sheth, P. N. 2016. Air–steam biomass gasification: experiments, modeling and simulation. Energy conversion and management, 110, 307-318.
  • Zhao, L. and Lu, Y. 2018. Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: A CFD-DEM study. The Journal of Supercritical Fluids, 131, 26-36.
  • Cui, H. and Grace, J. R. 2007. Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62(1-2), 45-55.
  • Wang, S., Luo, K., Hu, C., Sun, L. and Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 333, 304-316.
  • Behainne, J. J. R. and Martinez, J. D. 2014. Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy for Sustainable Development, 18, 75-82.
  • Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y. and Zhu, J.X., 2004. An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95-101.
  • Campoy, M., Gomez-Barea, A., Vidal, F.B. and Ollero, P., 2009. Air–steam gasification of biomass in a fluidised bed: process optimisation by enriched air. Fuel Processing Technology, 90(5), 677-685.
  • Gil-Lalaguna, N., Sánchez, J.L., Murillo, M.B., Rodríguez, E. and Gea, G., 2014. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chemical Engineering Journal, 248, 373-382.
  • Yan, L., Li, Y., Yang, B., Farahani, M.R. and Gao, W., 2018. Air-steam gasification of municipal solid wastes (MSWs) for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(5), 538-543.
  • Kuhe, A. and Aliyu, S.J., 2015. Gasification of' Loose'Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development, 4(2), 125-130.
  • Worldatlas, Where are Peanuts Grown?, 2019. https://www.worldatlas.com/articles/top-peanut-groundnut-producing-countries.html. (19 September 2019.)
  • Jarungthammachote, S. and Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32(9),1660-1669.
  • Costa, M., Massarotti, N., Cappuccio, G., Chang, C.T., Shiue, A., Lin, C.J. and Wang, Y.T., 2014. Modeling of syngas production from biomass energy resources available in Taiwan. Chemical Engineering, 37, 343-348.
  • Xi, W., Shi, Z., Farahani, M.R. and Gao, W., 2017. Computer simulation of coal gasification in a full scale plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(8), 768-774.
  • La Villetta, M., Costa, M. and Massarotti, N., 2017. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71-88.
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A. and Uysal, B.Z., 2012. A parametric study on coal gasification for the production of syngas. Chemical Papers, 66(7), 677-683.
  • Kocer, A., Yaka, I.F. and Gungor, A., 2017. Evaluation of greenhouse residues gasification performance in hydrogen production. International Journal of Hydrogen Energy, 42(36), 23244-23249.
  • Sansaniwal, S.K., Rosen, M.A. and Tyagi, S.K., 2017. Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23-43.
  • Groppi, G., Tronconi, E., Forzatti, P. and Berg, M., 2000. Mathematical modelling of catalytic combustors fuelled by gasified biomasses. Catalysis Today, 59(1-2), 151-162.
  • Gungor, A. and Yildirim, U., 2013. Two dimensional numerical computation of a circulating fluidized bed biomass gasifier. Computers & Chemical Engineering, 48, 234-250.
  • Natarajan, E. and Baskara Sethupathy, S., 2015. Gasification of groundnut shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(9), 980-986.
  • Nisamaneenate, J., Atong, D., Sornkade, P. and Sricharoenchaikul, V., 2015. Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renewable Energy, 79, 45-50.
  • Alzate, C.A., Chejne, F., Valdés, C.F., Berrio, A., De La Cruz, J. and Londoño, C.A., 2009. CO-gasification of pelletized wood residues. Fuel, 88(3), 437-445.
  • Kaushal, P., Pröll, T. and Hofbauer, H., 2007. Model development and validation: co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 86(17-18), 2687-2695.
  • Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M. and Subramanian, P., 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews, 13(1), 179-186.
  • Subbaiah, B.S., Murugan, D.K., Deenadayalan, D.B. and Dhamodharan, M.I., 2014. Gasification of biomass using fluidized bed. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 8995-9002.

Details

Primary Language English
Subjects Engineering, Multidisciplinary
Journal Section Research Article
Authors

Bekir Can LÜTFÜOĞLU This is me
AKDENIZ UNIVERSITY
0000-0001-6467-5005
Türkiye


Esat PEHLİVAN>
Uppsala University
0000-0002-7839-2572
Sweden


Zuhal AKYÜREK>
MEHMET AKIF ERSOY UNIVERSITY
0000-0003-3102-4278
Türkiye


Ali Özhan AKYÜZ> (Primary Author)
MEHMET AKIF ERSOY UNIVERSITY
0000-0001-9265-7293
Türkiye


Afşin GÜNGÖR>
AKDENIZ UNIVERSITY
0000-0002-4245-7741
Türkiye

Publication Date March 31, 2021
Submission Date October 4, 2020
Acceptance Date January 31, 2021
Published in Issue Year 2021, Volume 8, Issue 1

Cite

Bibtex @research article { ijeat804913, journal = {International Journal of Energy Applications and Technologies}, eissn = {2548-060X}, address = {editor.ijeat@gmail.com}, publisher = {İlker ÖRS}, year = {2021}, volume = {8}, number = {1}, pages = {27 - 32}, doi = {10.31593/ijeat.804913}, title = {Hydrogen production from groundnut shell via circulating fluidized bed technology}, key = {cite}, author = {Lütfüoğlu, Bekir Can and Pehlivan, Esat and Akyürek, Zuhal and Akyüz, Ali Özhan and Güngör, Afşin} }
APA Lütfüoğlu, B. C. , Pehlivan, E. , Akyürek, Z. , Akyüz, A. Ö. & Güngör, A. (2021). Hydrogen production from groundnut shell via circulating fluidized bed technology . International Journal of Energy Applications and Technologies , 8 (1) , 27-32 . DOI: 10.31593/ijeat.804913
MLA Lütfüoğlu, B. C. , Pehlivan, E. , Akyürek, Z. , Akyüz, A. Ö. , Güngör, A. "Hydrogen production from groundnut shell via circulating fluidized bed technology" . International Journal of Energy Applications and Technologies 8 (2021 ): 27-32 <https://dergipark.org.tr/en/pub/ijeat/issue/60964/804913>
Chicago Lütfüoğlu, B. C. , Pehlivan, E. , Akyürek, Z. , Akyüz, A. Ö. , Güngör, A. "Hydrogen production from groundnut shell via circulating fluidized bed technology". International Journal of Energy Applications and Technologies 8 (2021 ): 27-32
RIS TY - JOUR T1 - Hydrogen production from groundnut shell via circulating fluidized bed technology AU - Bekir CanLütfüoğlu, EsatPehlivan, ZuhalAkyürek, Ali ÖzhanAkyüz, AfşinGüngör Y1 - 2021 PY - 2021 N1 - doi: 10.31593/ijeat.804913 DO - 10.31593/ijeat.804913 T2 - International Journal of Energy Applications and Technologies JF - Journal JO - JOR SP - 27 EP - 32 VL - 8 IS - 1 SN - -2548-060X M3 - doi: 10.31593/ijeat.804913 UR - https://doi.org/10.31593/ijeat.804913 Y2 - 2021 ER -
EndNote %0 International Journal of Energy Applications and Technologies Hydrogen production from groundnut shell via circulating fluidized bed technology %A Bekir Can Lütfüoğlu , Esat Pehlivan , Zuhal Akyürek , Ali Özhan Akyüz , Afşin Güngör %T Hydrogen production from groundnut shell via circulating fluidized bed technology %D 2021 %J International Journal of Energy Applications and Technologies %P -2548-060X %V 8 %N 1 %R doi: 10.31593/ijeat.804913 %U 10.31593/ijeat.804913
ISNAD Lütfüoğlu, Bekir Can , Pehlivan, Esat , Akyürek, Zuhal , Akyüz, Ali Özhan , Güngör, Afşin . "Hydrogen production from groundnut shell via circulating fluidized bed technology". International Journal of Energy Applications and Technologies 8 / 1 (March 2021): 27-32 . https://doi.org/10.31593/ijeat.804913
AMA Lütfüoğlu B. C. , Pehlivan E. , Akyürek Z. , Akyüz A. Ö. , Güngör A. Hydrogen production from groundnut shell via circulating fluidized bed technology. IJEAT. 2021; 8(1): 27-32.
Vancouver Lütfüoğlu B. C. , Pehlivan E. , Akyürek Z. , Akyüz A. Ö. , Güngör A. Hydrogen production from groundnut shell via circulating fluidized bed technology. International Journal of Energy Applications and Technologies. 2021; 8(1): 27-32.
IEEE B. C. Lütfüoğlu , E. Pehlivan , Z. Akyürek , A. Ö. Akyüz and A. Güngör , "Hydrogen production from groundnut shell via circulating fluidized bed technology", International Journal of Energy Applications and Technologies, vol. 8, no. 1, pp. 27-32, Mar. 2021, doi:10.31593/ijeat.804913