Temperature increase, especially global warming, can be observed depending on various factors which led to several severe environmental problems. Urban areas are the most effected places by this temperature increase. Urban heat concentration, the so-called heat island effect, is high in structural areas. This situation causes human life to be adversely affected. Therefore, constant measurement and analyses are required to assess outdoor thermal comfort and thermal stress in urban areas. Today, unmanned aerial vehicle (UAV) systems are used as a rapid data production technique in Earth observation activities. Thermal cameras integrated into UAV systems can monitor the temperature values in urban areas precisely and constantly. This study focuses on the potential application of a UAV-mounted thermal camera system at a local scale due to its rapid response to surface temperature variables. A thermal camera UAV system to measure the energy fluxes and temperatures from the earth’s surface, which are integral to understanding landscape processes and responses. Thus, UAV thermal sensors were used directly for different land cover types in and around the Faculty of Engineering building of Kocaeli University in Turkey. Derived UAV surface temperatures were compared with simultaneously acquired in situ temperature measurements. Simultaneous terrestrial temperature measurements were obtained by using TFA ScanTemp 410 model surface temperature meter. A high correlation between UAV surface temperatures and terrestrial measurements was utilized by Pearson correlation with a 0.94 coefficient. It was concluded that the UAV-mounted thermal camera system is a promising tool that has increased opportunities to understand surface temperature variability at high spatial and temporal resolution.
FDK-2021-2183
Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimi
FDK-2021-2183
Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimine desteklerinden dolayı teşekkür ederiz.
Primary Language | English |
---|---|
Subjects | Geomatic Engineering (Other) |
Journal Section | Research Article |
Authors | |
Project Number | FDK-2021-2183 |
Early Pub Date | January 2, 2024 |
Publication Date | February 15, 2024 |
Published in Issue | Year 2024 |