Research Article
BibTex RIS Cite

GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye

Year 2024, , 199 - 210, 28.07.2024
https://doi.org/10.26833/ijeg.1367334

Abstract

Natural hazards are a part of critical issues affecting people and the environment. One of these natural hazards is snow avalanches. With the increase in the world population, it has emerged that decision-makers should take precautions against such natural hazards for population movements, construction, transportation, and tourism. Essential solution parts of this problem lay behind surveying, GIS, and spatial analysis-planning. This situation will be primarily due to the snow conditions, but certain terrain areas are susceptible. Snow avalanches' release mechanism depends on many factors, such as terrain, meteorological reports, snowpack, and other triggering parameters. Areas with certain topographical features that allow the deposition of snow masses are called avalanche-release areas. GIS helps to make decisions concerning spatial planning within avalanche release areas and finding risky zones. This study aimed to determine the potential avalanche release areas in the GIS environment in Rize, Türkiye, which was chosen as the pilot region. In the study, the detection of these avalanche areas was estimated using a mathematical equation model proposed by Hreško (1998) and determined with the help of GIS. Factors such as elevation, curvature, aspect, slope, and land cover type were used to estimate avalanche risk areas. A Model Builder workflow has also been created to automate the process stages. As a result of the study, avalanche risk areas were determined and mapped for the Rize mountainous region.

References

  • Renner K. (2015). Avalanche risk terrain susceptibility. http://hydrology.usu.edu/giswr/Archive15/Renner/Termproject.pdf
  • Schweizer, J., Bruce Jamieson, J., & Schneebeli, M. (2003). Snow avalanche formation. Reviews of Geophysics, 41(4). https://doi.org/10.1029/2002RG000123
  • Castebrunet, H., Eckert, N., & Giraud, G. (2012). Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Climate of the Past, 8(2), 855-875. https://doi.org/10.5194/cp-8-855-2012
  • Korzeniowska, K., Bühler, Y., Marty, M., & Korup, O. (2017). Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery. Natural Hazards and Earth System Sciences, 17(10), 1823-1836. https://doi.org/10.5194/nhess-17-1823-2017
  • Marana, B. (2017). An ArcGIS geo-morphological approach for snow avalanche zoning and risk estimation in the Province of Bergamo. Journal of Geographic Information System, 9(2), 83-97. https://doi.org/10.4236/jgis.2017.92006
  • McClung, D., & Schaerer, P. A. (2006). The avalanche handbook. The Mountaineers Books.
  • Bühler, Y., Kumar, S., Veitinger, J., Christen, M., Stoffel, A., & Snehmani. (2013). Automated identification of potential snow avalanche release areas based on digital elevation models. Natural Hazards and Earth System Sciences, 13(5), 1321-1335. https://doi.org/10.5194/nhess-13-1321-2013
  • Waldenström B. (2016). Identifying potential snow avalanche release areas in Sweden: An analysis of GIS methods and data resolutions. [Doctoral Dissertation, Stockholm University].
  • Çolak, E., & Memişoğlu, T. (2021). Thornthwaite iklim sınıflandırma yöntemine göre Karadeniz Bölgesi iklim sınır haritasının CBS ile üretilmesi. Geomatik, 6(1), 31-43. https://doi.org/10.29128/geomatik.651702
  • Doğan, A., Başeğmez, M., & Aydın, C. C. (2023). Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik, 8(3), 293-305. https://doi.org/10.29128/geomatik.1161434
  • Uyan, M. (2017). Güneş enerjisi santrali kurulabilecek alanların AHP yöntemi kullanılarak CBS destekli haritalanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 343-351. https://doi.org/10.5505/pajes.2016.59489
  • Geymen, A. (2017). Coğrafi bilgi sistemlerinde kullanılan konumsal analizlerin animasyon tabanlı öğrenimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 165-170. https://doi.org/10.5505/pajes.2016.02703
  • Eşsiz, M., & Acar, Z. (2023). Synoptic analysis of the January 2004 snowstorm: Example of Çanakkale. International Journal of Engineering and Geosciences, 8(1), 11-18. https://doi.org/10.26833/ijeg.988115
  • Siddique, F., & Rahman, A. U. (2023). Genesis and spatio-temporal analysis of glacial lakes in the peri-glacial environment of Western Himalayas. International Journal of Engineering and Geosciences, Geosciences, 8(2), 154-164. https://doi.org/10.26833/ijeg.1097912
  • Toppe, R. (1987). Terrain models: a tool for natural hazard mapping. International Association of Hydrological Sciences (IAHS), 629–638.
  • Hreško, J. (1998). Avalanche hazard of the Tatra high mountain landscape. Folia Geographica, 2, 348-352.
  • Maggioni, M., & Gruber, U. (2003). The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology, 37(3), 407-419. https://doi.org/10.1016/S0165-232X(03)00080-6
  • Barka, I. (2003). Identification of snow avalanche trigger areas and avalanche paths by the GIS. Geomorphologia Slovaca, 3(2), 60-63.
  • Delparte D. (2008). Avalanche Terrain Modeling in Glacier National Park, Canada. [Doctoral Dissertation, University of Calgary].
  • Sitko R. (2008). Identification, classification, and assessment of forest function with the use of geoinformatics. [Doctoral Dissertation, Technical University in Zvolen].
  • Bebi, P., Kienast, F., & Schönenberger, W. (2001). Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. Forest Ecology and Management, 145(1-2), 3-14. https://doi.org/10.1016/S0378-1127(00)00570-3
  • Biskupič, M., & Barka, I. (2009). Statistical avalanche run-out modelling using GIS on selected slopes of Western Tatras National park, Slovakia. International snow Science Workshop, Davos, 482-487.
  • McClung, D. M. (2002). The elements of applied avalanche forecasting, Part I: The human issues. Natural Hazards, 26, 111-129. https://doi.org/10.1023/A:1015665432221
  • AS Mohammed, A. A., Naqvi, H. R., & Firdouse, Z. (2015). An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan Mountain. Journal of Mountain Science, 12, 1499-1510. https://doi.org/10.1007/s11629-014-3274-z
  • Leroi, E. (1996). Landslide hazard-risk maps at different scales: objectives, tools and developments. In Landslides, 35-51.
  • Mihalić, S. (1998). Recommendations for landslide hazard and risk mapping in Croatia. Geologia Croatica, 51(2), 195-204.
  • Birkeland, K. W., & Mock, C. J. (2001). The major snow avalanche cycle of February 1986 in the western United States. Natural Hazards, 24, 75-95. https://doi.org/10.1023/A:1011192619039
  • Jamieson, B., & Stethem, C. (2002). Snow avalanche hazards and management in Canada: challenges and progress. Natural Hazards, 26, 35-53. https://doi.org/10.1023/A:1015212626232
  • Glade, T., Anderson, M. G., & Crozier, M. J. (2005). Landslide hazard and risk, 807. Chichester: Wiley.
  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159-173. https://doi.org/10.1007/s10346-006-0036-1
  • Höller, P. (2007). Avalanche hazards and mitigation in Austria: a review. Natural Hazards, 43(1), 81-101. https://doi.org/10.1007/s11069-007-9109-2
  • Maggioni, M., Gruber, U., Purves, R. S., & Freppaz, M. (2006). Potential release areas and return period of avalanches: is there a relation?. International Snow Science Workshop, 566-571.
  • Omirzhanova, Z. T., Urazaliev, A. S., & Aimenov, A. T. (2015). GIS for predicting the avalanche zones in the mountain regions of Kazakhstan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 39-44. https://doi.org/10.5194/isprsarchives-XL-2-W4-39-2015
  • Cappabianca, F., Barbolini, M., & Natale, L. (2008). Snow avalanche risk assessment and mapping: A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Regions Science and Technology, 54(3), 193-205. https://doi.org/10.1016/j.coldregions.2008.06.005
  • Peitzsch, E. H., Hendrikx, J., & Fagre, D. B. (2015). Terrain parameters of glide snow avalanches and a simple spatial glide snow avalanche model. Cold Regions Science and Technology, 120, 237-250. https://doi.org/10.1016/j.coldregions.2015.08.002
  • Yariyan, P., Avand, M., Abbaspour, R. A., Karami, M., & Tiefenbacher, J. P. (2020). GIS-based spatial modeling of snow avalanches using four novel ensemble models. Science of The Total Environment, 745, 141008. https://doi.org/10.1016/j.scitotenv.2020.141008
  • Teich, M., & Bebi, P. (2009). Evaluating the benefit of avalanche protection forest with GIS-based risk analyses—A case study in Switzerland. Forest Ecology and Management, 257(9), 1910-1919. https://doi.org/10.1016/j.foreco.2009.01.046
  • Gruber, U., & Bartelt, P. (2007). Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environmental Modelling & Software, 22(10), 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001
  • Maggioni, M., Gruber, U., & Stoffel, A. (2002). Definition and characterisation of potential avalanche release areas. Proceedings of the ESRI Conference, San Diego.
  • Marek, B., & Ivan, B. (2010). Spatial modelling of snow avalanche run-outs using GIS. Proceedings from Symposium GIS, Ostrava.
  • Aydin, A., Bühler, Y., Christen, M., & Gürer, I. (2014). Avalanche situation in Turkey and back calculation of selected events. Natural Hazards and Earth System Sciences, 14(5), 1145-1154. https://doi.org/10.5194/nhess-14-1145-2014
  • Harvey, S., Schmudlach, G., Bühler, Y., Dürr, L., Stoffel, A., & Christen, M. (2018). Avalanche terrain maps for backcountry skiing in Switzerland. International Snow Science Workshop, Innsbruck, Austria, 1625-1631.
  • Peitzsch, E. H., Hendrikx, J., & Fagre, D. B. (2014). Assessing the importance of terrain parameters on glide avalanche release. International Snow Science Workshop, 708-716.
  • Bolognesi, R., Denuelle, M., & Dexter, L. (1996). Avalanche forecasting with GIS. International Snow Science Workshop (ISSW), Banff, Canada, 11-13.
  • Košová, V., Molokáč, M., Čech, V., & Jesenský, M. (2022). Avalanche hazard modelling within the kráľova hoľa area in the low tatra mountains in Slovakia. Land, 11(6), 766. https://doi.org/10.3390/land11060766
  • Aydın, A., & Eker, R. (2017). GIS-Based snow avalanche hazard mapping: Bayburt-Aşağı Dere catchment case. Journal of Environmental Biology, 38, 937-943. https://doi.org/10.22438/jeb/38/5(si)/gm-10
  • Barbolini, M., Pagliardi, M., Ferro, F., & Corradeghini, P. (2011). Avalanche hazard mapping over large undocumented areas. Natural Hazards, 56(2), 451-464. https://doi.org/10.1007/s11069-009-9434-8
  • Pistocchi, A., & Notarnicola, C. (2013). Data-driven mapping of avalanche release areas: a case study in South Tyrol, Italy. Natural Hazards, 65, 1313-1330. https://doi.org/10.1007/s11069-012-0410-3
  • Selcuk, L. (2013). An avalanche hazard model for Bitlis Province, Turkey, using GIS based multicriteria decision analysis. Turkish Journal of Earth Sciences, 22(4), 523-535. https://doi.org/10.3906/yer-1201-10
  • Yılmaz B. (2016). CBS tabanlı bulanık mantık ve analitik hiyerarşi sürecinin (AHP) kar çığı duyarlılık haritalamasına uygulanması, Kuzey San Juan, Colorado. [Master’s Thesis, Karadeniz Technical Üniversity].
  • Durlević, U., Valjarević, A., Novković, I., Ćurčić, N. B., Smiljić, M., Morar, C., ... & Lukić, T. (2022). GIS-based spatial modeling of snow avalanches using analytic Hierarchy process. a case study of the Šar Mountains, Serbia. Atmosphere, 13(8), 1229. https://doi.org/10.3390/atmos13081229
  • Bhardwaj, A. S., Pandit, A., & Ganju, A. (2014). Demarcation of potential avalanche sites using remote sensing and ground observations: a case study of Gangotri glacier. Geocarto International, 29(5), 520-535. https://doi.org/10.1080/10106049.2013.807304
  • Kumar, S., Srivastava, P. K., & Snehmani. (2018). Geospatial modelling and mapping of snow avalanche susceptibility. Journal of the Indian Society of Remote Sensing, 46, 109-119. https://doi.org/10.1007/s12524-017-0672-z
  • Akay, H. (2021). Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. Catena, 206, 105524. https://doi.org/10.1016/j.catena.2021.105524
  • Nefeslioglu, H. A., Sezer, E. A., Gokceoglu, C., & Ayas, Z. (2013). A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments. Computers & Geosciences, 59, 1-8. https://doi.org/10.1016/j.cageo.2013.05.010
  • Maggioni, M. (2004). Avalanche release areas and their influence on uncertainty in avalanche hazard mapping. [Doctoral Dissertation, University of Zurich].
  • Turkish Statistical Institute. (2022). Address Based Population Registration System Database Online. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • State Meteorological Service (2022). Rize sıcaklık istatistikleri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=RIZE
  • T.C. Culture and Tourism Ministry (2022). Rize- Kaçkar Dağları. https://yigm.ktb.gov.tr/TR-9905/rize-kackar-siradaglari.html
  • Gubler, H., & Rychetnik, J. (1991). Effects of forests near timberline on avalanche formation.
  • Weir, P. (2002). Snow avalanche management in forested terrain. British Columbia, Forest Science Program.
  • Aydın, A., & Eker, R. (2014). Topografik Parametreler Kullanılarak Potansiyel Çığ Başlama Bölgelerinin CBS Tabanlı Olarak Belirlenmesi. II. Ulusal Akdeniz Orman Ve Çevre Sempozyumu, 426-435.
  • Mears, A. I. (1992). Snow-avalanche hazard analysis for land-use planning and engineering. Colorado Geological Survey, Department of Natural Resources.
  • Fredston, J. A., & Fesler, D. (1994). Snow sense: A guide to evaluating snow avalanche hazard. Alaska Mountain Safety Center, Incorporated.
  • McClung, D. M. (2001). Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Annals of Glaciology, 32, 223-229. https://doi.org/10.3189/172756401781819391
  • Schaerer, P. A. (1977). Analysis of snow avalanche terrain. Canadian Geotechnical Journal, 14(3), 281-287. https://doi.org/10.1139/t77-034
  • Armstrong, B., & Williams, K. (1986). The Avalanche book: Golden. Colorado, Fulcrum Inc, 240.
  • Boltižiar, M., Biskupič, M., & Barka, I. (2016). Spatial avalanche modelling by application of GIS on the selected slopes of Western Tatra Mts. and Belianske Tatra Mts., Slovakia. Geographia Polonica, 89(1), 79-90.
  • T. C. Ministry of Forestry and Water Management (2016). National Avalanche Risk Activation Plan Report. Ankara, Turkey.
  • Richnavský, J., Biskupič, M., Mudroň, I., Devečka, B., Unucka, J., Chrustek, P., ... & Matějíček, L. (2011). Using modern GIS tools to reconstruct the avalanche: A case study of Magurka 1970. Proceedings of the 8th International Symposium GIS Ostrava, 175-185.
  • http://mintsnowboarding.com/blog/avalanche-facts-and-tips/
Year 2024, , 199 - 210, 28.07.2024
https://doi.org/10.26833/ijeg.1367334

Abstract

References

  • Renner K. (2015). Avalanche risk terrain susceptibility. http://hydrology.usu.edu/giswr/Archive15/Renner/Termproject.pdf
  • Schweizer, J., Bruce Jamieson, J., & Schneebeli, M. (2003). Snow avalanche formation. Reviews of Geophysics, 41(4). https://doi.org/10.1029/2002RG000123
  • Castebrunet, H., Eckert, N., & Giraud, G. (2012). Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Climate of the Past, 8(2), 855-875. https://doi.org/10.5194/cp-8-855-2012
  • Korzeniowska, K., Bühler, Y., Marty, M., & Korup, O. (2017). Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery. Natural Hazards and Earth System Sciences, 17(10), 1823-1836. https://doi.org/10.5194/nhess-17-1823-2017
  • Marana, B. (2017). An ArcGIS geo-morphological approach for snow avalanche zoning and risk estimation in the Province of Bergamo. Journal of Geographic Information System, 9(2), 83-97. https://doi.org/10.4236/jgis.2017.92006
  • McClung, D., & Schaerer, P. A. (2006). The avalanche handbook. The Mountaineers Books.
  • Bühler, Y., Kumar, S., Veitinger, J., Christen, M., Stoffel, A., & Snehmani. (2013). Automated identification of potential snow avalanche release areas based on digital elevation models. Natural Hazards and Earth System Sciences, 13(5), 1321-1335. https://doi.org/10.5194/nhess-13-1321-2013
  • Waldenström B. (2016). Identifying potential snow avalanche release areas in Sweden: An analysis of GIS methods and data resolutions. [Doctoral Dissertation, Stockholm University].
  • Çolak, E., & Memişoğlu, T. (2021). Thornthwaite iklim sınıflandırma yöntemine göre Karadeniz Bölgesi iklim sınır haritasının CBS ile üretilmesi. Geomatik, 6(1), 31-43. https://doi.org/10.29128/geomatik.651702
  • Doğan, A., Başeğmez, M., & Aydın, C. C. (2023). Geniş çalışma alanlarında jeofizik ve jeoteknik ölçümlerin yerine geçebilecek vekil özelliklerin CBS ile belirlenmesi. Geomatik, 8(3), 293-305. https://doi.org/10.29128/geomatik.1161434
  • Uyan, M. (2017). Güneş enerjisi santrali kurulabilecek alanların AHP yöntemi kullanılarak CBS destekli haritalanması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 343-351. https://doi.org/10.5505/pajes.2016.59489
  • Geymen, A. (2017). Coğrafi bilgi sistemlerinde kullanılan konumsal analizlerin animasyon tabanlı öğrenimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 165-170. https://doi.org/10.5505/pajes.2016.02703
  • Eşsiz, M., & Acar, Z. (2023). Synoptic analysis of the January 2004 snowstorm: Example of Çanakkale. International Journal of Engineering and Geosciences, 8(1), 11-18. https://doi.org/10.26833/ijeg.988115
  • Siddique, F., & Rahman, A. U. (2023). Genesis and spatio-temporal analysis of glacial lakes in the peri-glacial environment of Western Himalayas. International Journal of Engineering and Geosciences, Geosciences, 8(2), 154-164. https://doi.org/10.26833/ijeg.1097912
  • Toppe, R. (1987). Terrain models: a tool for natural hazard mapping. International Association of Hydrological Sciences (IAHS), 629–638.
  • Hreško, J. (1998). Avalanche hazard of the Tatra high mountain landscape. Folia Geographica, 2, 348-352.
  • Maggioni, M., & Gruber, U. (2003). The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology, 37(3), 407-419. https://doi.org/10.1016/S0165-232X(03)00080-6
  • Barka, I. (2003). Identification of snow avalanche trigger areas and avalanche paths by the GIS. Geomorphologia Slovaca, 3(2), 60-63.
  • Delparte D. (2008). Avalanche Terrain Modeling in Glacier National Park, Canada. [Doctoral Dissertation, University of Calgary].
  • Sitko R. (2008). Identification, classification, and assessment of forest function with the use of geoinformatics. [Doctoral Dissertation, Technical University in Zvolen].
  • Bebi, P., Kienast, F., & Schönenberger, W. (2001). Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. Forest Ecology and Management, 145(1-2), 3-14. https://doi.org/10.1016/S0378-1127(00)00570-3
  • Biskupič, M., & Barka, I. (2009). Statistical avalanche run-out modelling using GIS on selected slopes of Western Tatras National park, Slovakia. International snow Science Workshop, Davos, 482-487.
  • McClung, D. M. (2002). The elements of applied avalanche forecasting, Part I: The human issues. Natural Hazards, 26, 111-129. https://doi.org/10.1023/A:1015665432221
  • AS Mohammed, A. A., Naqvi, H. R., & Firdouse, Z. (2015). An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan Mountain. Journal of Mountain Science, 12, 1499-1510. https://doi.org/10.1007/s11629-014-3274-z
  • Leroi, E. (1996). Landslide hazard-risk maps at different scales: objectives, tools and developments. In Landslides, 35-51.
  • Mihalić, S. (1998). Recommendations for landslide hazard and risk mapping in Croatia. Geologia Croatica, 51(2), 195-204.
  • Birkeland, K. W., & Mock, C. J. (2001). The major snow avalanche cycle of February 1986 in the western United States. Natural Hazards, 24, 75-95. https://doi.org/10.1023/A:1011192619039
  • Jamieson, B., & Stethem, C. (2002). Snow avalanche hazards and management in Canada: challenges and progress. Natural Hazards, 26, 35-53. https://doi.org/10.1023/A:1015212626232
  • Glade, T., Anderson, M. G., & Crozier, M. J. (2005). Landslide hazard and risk, 807. Chichester: Wiley.
  • Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159-173. https://doi.org/10.1007/s10346-006-0036-1
  • Höller, P. (2007). Avalanche hazards and mitigation in Austria: a review. Natural Hazards, 43(1), 81-101. https://doi.org/10.1007/s11069-007-9109-2
  • Maggioni, M., Gruber, U., Purves, R. S., & Freppaz, M. (2006). Potential release areas and return period of avalanches: is there a relation?. International Snow Science Workshop, 566-571.
  • Omirzhanova, Z. T., Urazaliev, A. S., & Aimenov, A. T. (2015). GIS for predicting the avalanche zones in the mountain regions of Kazakhstan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 39-44. https://doi.org/10.5194/isprsarchives-XL-2-W4-39-2015
  • Cappabianca, F., Barbolini, M., & Natale, L. (2008). Snow avalanche risk assessment and mapping: A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Regions Science and Technology, 54(3), 193-205. https://doi.org/10.1016/j.coldregions.2008.06.005
  • Peitzsch, E. H., Hendrikx, J., & Fagre, D. B. (2015). Terrain parameters of glide snow avalanches and a simple spatial glide snow avalanche model. Cold Regions Science and Technology, 120, 237-250. https://doi.org/10.1016/j.coldregions.2015.08.002
  • Yariyan, P., Avand, M., Abbaspour, R. A., Karami, M., & Tiefenbacher, J. P. (2020). GIS-based spatial modeling of snow avalanches using four novel ensemble models. Science of The Total Environment, 745, 141008. https://doi.org/10.1016/j.scitotenv.2020.141008
  • Teich, M., & Bebi, P. (2009). Evaluating the benefit of avalanche protection forest with GIS-based risk analyses—A case study in Switzerland. Forest Ecology and Management, 257(9), 1910-1919. https://doi.org/10.1016/j.foreco.2009.01.046
  • Gruber, U., & Bartelt, P. (2007). Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environmental Modelling & Software, 22(10), 1472-1481. https://doi.org/10.1016/j.envsoft.2007.01.001
  • Maggioni, M., Gruber, U., & Stoffel, A. (2002). Definition and characterisation of potential avalanche release areas. Proceedings of the ESRI Conference, San Diego.
  • Marek, B., & Ivan, B. (2010). Spatial modelling of snow avalanche run-outs using GIS. Proceedings from Symposium GIS, Ostrava.
  • Aydin, A., Bühler, Y., Christen, M., & Gürer, I. (2014). Avalanche situation in Turkey and back calculation of selected events. Natural Hazards and Earth System Sciences, 14(5), 1145-1154. https://doi.org/10.5194/nhess-14-1145-2014
  • Harvey, S., Schmudlach, G., Bühler, Y., Dürr, L., Stoffel, A., & Christen, M. (2018). Avalanche terrain maps for backcountry skiing in Switzerland. International Snow Science Workshop, Innsbruck, Austria, 1625-1631.
  • Peitzsch, E. H., Hendrikx, J., & Fagre, D. B. (2014). Assessing the importance of terrain parameters on glide avalanche release. International Snow Science Workshop, 708-716.
  • Bolognesi, R., Denuelle, M., & Dexter, L. (1996). Avalanche forecasting with GIS. International Snow Science Workshop (ISSW), Banff, Canada, 11-13.
  • Košová, V., Molokáč, M., Čech, V., & Jesenský, M. (2022). Avalanche hazard modelling within the kráľova hoľa area in the low tatra mountains in Slovakia. Land, 11(6), 766. https://doi.org/10.3390/land11060766
  • Aydın, A., & Eker, R. (2017). GIS-Based snow avalanche hazard mapping: Bayburt-Aşağı Dere catchment case. Journal of Environmental Biology, 38, 937-943. https://doi.org/10.22438/jeb/38/5(si)/gm-10
  • Barbolini, M., Pagliardi, M., Ferro, F., & Corradeghini, P. (2011). Avalanche hazard mapping over large undocumented areas. Natural Hazards, 56(2), 451-464. https://doi.org/10.1007/s11069-009-9434-8
  • Pistocchi, A., & Notarnicola, C. (2013). Data-driven mapping of avalanche release areas: a case study in South Tyrol, Italy. Natural Hazards, 65, 1313-1330. https://doi.org/10.1007/s11069-012-0410-3
  • Selcuk, L. (2013). An avalanche hazard model for Bitlis Province, Turkey, using GIS based multicriteria decision analysis. Turkish Journal of Earth Sciences, 22(4), 523-535. https://doi.org/10.3906/yer-1201-10
  • Yılmaz B. (2016). CBS tabanlı bulanık mantık ve analitik hiyerarşi sürecinin (AHP) kar çığı duyarlılık haritalamasına uygulanması, Kuzey San Juan, Colorado. [Master’s Thesis, Karadeniz Technical Üniversity].
  • Durlević, U., Valjarević, A., Novković, I., Ćurčić, N. B., Smiljić, M., Morar, C., ... & Lukić, T. (2022). GIS-based spatial modeling of snow avalanches using analytic Hierarchy process. a case study of the Šar Mountains, Serbia. Atmosphere, 13(8), 1229. https://doi.org/10.3390/atmos13081229
  • Bhardwaj, A. S., Pandit, A., & Ganju, A. (2014). Demarcation of potential avalanche sites using remote sensing and ground observations: a case study of Gangotri glacier. Geocarto International, 29(5), 520-535. https://doi.org/10.1080/10106049.2013.807304
  • Kumar, S., Srivastava, P. K., & Snehmani. (2018). Geospatial modelling and mapping of snow avalanche susceptibility. Journal of the Indian Society of Remote Sensing, 46, 109-119. https://doi.org/10.1007/s12524-017-0672-z
  • Akay, H. (2021). Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. Catena, 206, 105524. https://doi.org/10.1016/j.catena.2021.105524
  • Nefeslioglu, H. A., Sezer, E. A., Gokceoglu, C., & Ayas, Z. (2013). A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments. Computers & Geosciences, 59, 1-8. https://doi.org/10.1016/j.cageo.2013.05.010
  • Maggioni, M. (2004). Avalanche release areas and their influence on uncertainty in avalanche hazard mapping. [Doctoral Dissertation, University of Zurich].
  • Turkish Statistical Institute. (2022). Address Based Population Registration System Database Online. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • State Meteorological Service (2022). Rize sıcaklık istatistikleri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=RIZE
  • T.C. Culture and Tourism Ministry (2022). Rize- Kaçkar Dağları. https://yigm.ktb.gov.tr/TR-9905/rize-kackar-siradaglari.html
  • Gubler, H., & Rychetnik, J. (1991). Effects of forests near timberline on avalanche formation.
  • Weir, P. (2002). Snow avalanche management in forested terrain. British Columbia, Forest Science Program.
  • Aydın, A., & Eker, R. (2014). Topografik Parametreler Kullanılarak Potansiyel Çığ Başlama Bölgelerinin CBS Tabanlı Olarak Belirlenmesi. II. Ulusal Akdeniz Orman Ve Çevre Sempozyumu, 426-435.
  • Mears, A. I. (1992). Snow-avalanche hazard analysis for land-use planning and engineering. Colorado Geological Survey, Department of Natural Resources.
  • Fredston, J. A., & Fesler, D. (1994). Snow sense: A guide to evaluating snow avalanche hazard. Alaska Mountain Safety Center, Incorporated.
  • McClung, D. M. (2001). Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Annals of Glaciology, 32, 223-229. https://doi.org/10.3189/172756401781819391
  • Schaerer, P. A. (1977). Analysis of snow avalanche terrain. Canadian Geotechnical Journal, 14(3), 281-287. https://doi.org/10.1139/t77-034
  • Armstrong, B., & Williams, K. (1986). The Avalanche book: Golden. Colorado, Fulcrum Inc, 240.
  • Boltižiar, M., Biskupič, M., & Barka, I. (2016). Spatial avalanche modelling by application of GIS on the selected slopes of Western Tatra Mts. and Belianske Tatra Mts., Slovakia. Geographia Polonica, 89(1), 79-90.
  • T. C. Ministry of Forestry and Water Management (2016). National Avalanche Risk Activation Plan Report. Ankara, Turkey.
  • Richnavský, J., Biskupič, M., Mudroň, I., Devečka, B., Unucka, J., Chrustek, P., ... & Matějíček, L. (2011). Using modern GIS tools to reconstruct the avalanche: A case study of Magurka 1970. Proceedings of the 8th International Symposium GIS Ostrava, 175-185.
  • http://mintsnowboarding.com/blog/avalanche-facts-and-tips/
There are 71 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Articles
Authors

Ebru Çolak 0000-0002-3000-1704

Gamze Bediroğlu 0000-0003-2755-3206

Tuğba Memişoğlu Baykal 0000-0003-3548-6795

Early Pub Date July 23, 2024
Publication Date July 28, 2024
Published in Issue Year 2024

Cite

APA Çolak, E., Bediroğlu, G., & Memişoğlu Baykal, T. (2024). GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. International Journal of Engineering and Geosciences, 9(2), 199-210. https://doi.org/10.26833/ijeg.1367334
AMA Çolak E, Bediroğlu G, Memişoğlu Baykal T. GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. IJEG. July 2024;9(2):199-210. doi:10.26833/ijeg.1367334
Chicago Çolak, Ebru, Gamze Bediroğlu, and Tuğba Memişoğlu Baykal. “GIS-Based Determination of Potential Snow Avalanche Areas: A Case Study of Rize Province of Türkiye”. International Journal of Engineering and Geosciences 9, no. 2 (July 2024): 199-210. https://doi.org/10.26833/ijeg.1367334.
EndNote Çolak E, Bediroğlu G, Memişoğlu Baykal T (July 1, 2024) GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. International Journal of Engineering and Geosciences 9 2 199–210.
IEEE E. Çolak, G. Bediroğlu, and T. Memişoğlu Baykal, “GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye”, IJEG, vol. 9, no. 2, pp. 199–210, 2024, doi: 10.26833/ijeg.1367334.
ISNAD Çolak, Ebru et al. “GIS-Based Determination of Potential Snow Avalanche Areas: A Case Study of Rize Province of Türkiye”. International Journal of Engineering and Geosciences 9/2 (July 2024), 199-210. https://doi.org/10.26833/ijeg.1367334.
JAMA Çolak E, Bediroğlu G, Memişoğlu Baykal T. GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. IJEG. 2024;9:199–210.
MLA Çolak, Ebru et al. “GIS-Based Determination of Potential Snow Avalanche Areas: A Case Study of Rize Province of Türkiye”. International Journal of Engineering and Geosciences, vol. 9, no. 2, 2024, pp. 199-10, doi:10.26833/ijeg.1367334.
Vancouver Çolak E, Bediroğlu G, Memişoğlu Baykal T. GIS-based determination of potential snow avalanche areas: A case study of Rize Province of Türkiye. IJEG. 2024;9(2):199-210.