Integrating Vegetation Indices and PRISMA Hyperspectral Imagery for Forest Risk Assessment in Northern Iran
Year 2026,
Volume: 11 Issue: 1, 163 - 182, 01.10.2025
Roghayyeh Ebadi
,
Sadra Karımzadeh
,
Khalil Valizadeh Kamran
,
Mostafa Mahdavifard
Abstract
In recent years, the forests of northern Iran have experienced increasing ecological stress due to climate change and human activities, highlighting the need for effective forest health monitoring. This study evaluates the applicability of PRISMA hyperspectral imagery for assessing forest risk in this region during 2024. Leveraging the sensor’s high spectral resolution, several vegetation indices were extracted and grouped into three categories: greenness, pigment, and canopy water/light use efficiency. These indices were combined and classified into five risk levels using multi-index integration and weighting techniques in a GIS environment. Validation of the classification results revealed a high level of accuracy, with an overall accuracy of 93.73% and a Kappa coefficient of 0.9157. The combined indices outperformed individual indices in identifying vegetation stress patterns. Results indicated that the central and western forest areas are in healthy condition, while the eastern, northeastern, and southeastern regions exhibit notable stress, likely linked to water deficit or pest and disease pressures. The findings underscore the effectiveness of integrating hyperspectral data and vegetation indices for forest risk assessment and offer valuable insights for improving spatiotemporal forest health monitoring strategies.
References
-
Başaran, N., Matcı, D. K., & Avdan, U. (2022). Using multiple linear regression to analyze changes in forest area: the case study of Akdeniz Region. International Journal of Engineering and Geosciences, 7(3), 247-263.
-
Zadbagher, E., Marangoz, A. M., & Becek, K. (2023). Characterizing and estimating forest structure using active remote sensing: An overview. Advanced Remote Sensing, 3(1), 38–46.
-
Ercan, O., & Toker, K. (2022). Assessment of the completion of the forest cadastre considering the legal grounds, collaboration, and the use of technology: The case of Turkey. International Journal of Engineering and Geosciences, 7(1), 49–58.
-
Khorrami, B., Gunduz, O., Patel, N., Ghouzlane, S., & Najjar, M. (2019). Land surface temperature anomalies in response to changes in forest cover. International Journal of Engineering and Geosciences, 4(3), 149–156.
-
Latifi, H. (2012). Characterizing forest structure by means of remote sensing: A review. Remote Sensing—Advanced Techniques and Platforms, 1–26.
-
García, M., Saatchi, S., Ustin, S., & Balzter, H. (2018). Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery. International Journal of Applied Earth Observation and Geoinformation, 66, 159–173.
-
Ocer, N. E., Kaplan, G., Erdem, F., Kucuk Matci, D., & Avdan, U. (2020). Tree extraction from multi-scale UAV images using Mask R-CNN with FPN. Remote Sensing Letters, 11(9), 847–856.
-
Çömert, R., Matcı, D. K., & Avdan, U. (2019). Object-based burned area mapping with random forest algorithm. International Journal of Engineering and Geosciences, 4(2), 78–87.
-
Demir, N. (2020). NDVI analysis of Australian bushfires with cloud computing. Türk Uzaktan Algılama ve CBS Dergisi, 1(2), 78–84.
-
Küçük Matcı, D., & Avdan, U. (2020). Comparative analysis of unsupervised classification methods for mapping burned forest areas. Arabian Journal of Geosciences, 13, 1–13.
-
Ahady, A. B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7(1), 24–31.
-
Kaplan, G., & Avdan, Z. Y. (2020). Space-borne air pollution observation from Sentinel-5P TROPOMI: Relationship between pollutants, geographical and demographic data. International Journal of Engineering and Geosciences, 5(3), 130–137.
-
Orhan, O., & Yakar, M. (2016). Investigating land surface temperature changes using Landsat data in Konya, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 285-289.
-
Bagheri, S., Soorghali, M., & Emami, H. (2024). A synthesis approach of vegetation indices for monitoring high-risk forest regions using PRISMA satellite imaging: A part of the forest areas of northern Iran. Scientific-Research Quarterly of Geographical Data (SEPEHR), 33(130), 7–27. https://doi.org/10.22131/sepehr.2024.2008022.2998. [In Persian]
-
Tırmanoğlu, B., İsmailoğlu, İ., Kokal, A. T., & Musaoğlu, N. (2023). Yeni nesil multispektral ve hiperspektral uydu görüntülerinin arazi örtüsü/arazi kullanımı sınıflandırma performanslarının karşılaştırılması: Sentinel-2 ve PRISMA uydusu. Geomatik, 8(1), 79–90.
-
Nofrizal, A. Y., Sonobe, R., Hiroto, Y., Morita, A., & Ikka, T. (2022). Estimating chlorophyll content of Zizania latifolia with hyperspectral data and random forest. International Journal of Engineering and Geosciences, 7(3), 221–228.
-
Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
-
Şimşek, F. F. (2023). Optik ve radar görüntüleri ile aşırı gradyan artırma algoritması kullanılarak tarımsal ürün desen tespiti. Geomatik, 9(1), 54–68.
-
Gupta, S. K., & Pandey, A. C. (2021). Spectral aspects for monitoring forest health in extreme season using multispectral imagery. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 579–586.
-
Ahmad, S., Pandey, A. C., Kumar, A., Lele, N. V., & Bhattacharya, B. K. (2020). Forest health estimation in Sholayar Reserve Forest, Kerala using AVIRIS-NG hyperspectral data. Spatial Information Research, 28(1), 25–38.
-
Kureel, N., Sarup, J., Matin, S., Goswami, S., & Kureel, K. (2022). Modelling vegetation health and stress using hyperspectral remote sensing data. Modeling Earth Systems and Environment, 1–16.
-
Çelik, M. Ö., Kuşak, L., & Yakar, M. (2024). Assessment of groundwater potential zones utilizing geographic information system-based analytical hierarchy process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and technique for order preference by similarity to ideal solution methods: a case study in Mersin, Türkiye. Sustainability, 16(5), 2202.
-
Kayet, N., Pathak, K., Chakrabarty, A., Singh, C. P., Chowdary, V. M., Kumar, S., & Sahoo, S. (2019). Forest health assessment for geo-environmental planning and management in hilltop mining areas using Hyperion and Landsat data. Ecological Indicators, 106, 105471.
-
Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59.
-
Khorrami, B., & Kamran, K. V. (2022). A fuzzy multi-criteria decision-making approach for the assessment of forest health applying hyperspectral imageries: A case study from Ramsar forest, north of Iran. International Journal of Engineering and Geosciences, 7(3), 214–220.
-
Gasmi, A., Gomez, C., Chehbouni, A., Dhiba, D., & El Gharous, M. (2022). Using PRISMA hyperspectral satellite imagery and GIS approaches for soil fertility mapping (FertiMap) in northern Morocco. Remote Sensing, 14(16), 4080.
-
Rouse Jr, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973, December). Paper A 20. In Third Earth Resources Technology Satellite-1 Symposium: The proceedings of a symposium held by Goddard Space Flight Center at Washington, DC (Vol. 351, p. 309).
-
Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.
-
Vogelmann, J. E., Rock, B. N., & Moss, D. M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563–1575.
-
Gitelson, A., & Merzlyak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves: Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3), 286–292.
-
Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38–45.
-
Peñuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14(10), 1887–1905.
-
Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44.
-
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.
-
Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221–230.
-
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.
-
Datt, B. (1999). A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. Journal of Plant Physiology, 154(1), 30–36.
-
Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.
-
Hosseinali, F., A. A. A., & Rajabi, M. A. (2010). Evaluation of various methods for weighting spatial information in GIS (case study: Mineral potential mapping). Iranian Journal of Remote Sensing & GIS, 38(2)(1), 1–16.