Lineament Analysis and Water Level Variations in the Geodynamic Assessment of the Charvak Reservoir Area, Uzbekistan (2022–2024)
Year 2026,
Volume: 11 Issue: 1, 89 - 105, 01.10.2025
Dilbarkhon Fazilova
,
Hasan Magdiev
,
Khairullo Kabilov
Abstract
Seasonal fluctuations in water levels can significantly influence geodynamic processes in tectonically active reservoir regions. This study investigates such effects around the Charvak Reservoir (Uzbekistan) using lineament analysis derived from Landsat 9 satellite imagery for the period 2022–2024. Lineaments were extracted using the pyLefa tool across three seasonal phases—March, July, and October—to capture deformation patterns associated with minimum, peak, and declining water levels. Results reveal a strong correlation between reservoir volume and lineament density, with peak values observed during high water levels. Orientation changes further indicate stress redistribution and possible reactivation of surface faults. Seismic records confirm spatial alignment between active fault zones and areas of high lineament density. These findings provide new insight into how hydrological loading interacts with crustal structures and demonstrate the value of multi-temporal lineament mapping as a tool for monitoring reservoir-induced deformation and supporting geohazard risk assessment.
Supporting Institution
Agency of Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan
Project Number
AL-8624042530
Thanks
Dispatch Service of the Ministry of Water Resources of the Republic of Uzbekistan for providing valuable data on water volume variations in the Charvak Reservoir
References
-
Bahadır, M., Ocak, F., & Şen, H. (2024). Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye). International Journal of Engineering and Geosciences, 9(3), 390–405. https://doi.org/10.26833/ijeg.1465072
-
Paul, S. (2022). Change detection and future change prediction in Habra I and II block using remote sensing and GIS – A case study. International Journal of Engineering and Geosciences, 7(2), 191–207. https://doi.org/10.26833/ijeg.975222
-
Partigöç, N. S., & Dinçer, C. (2024). The multi–disaster risk assessment: A-GIS based approach for Izmir City. International Journal of Engineering and Geosciences, 9(1), 61–76. https://doi.org/10.26833/ijeg.1295657
-
Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29.
-
Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616).
-
Uzun, M. (2025). İnegöl Havzası’nda (Bursa) coğrafi bilgi sistemleri ile antropojenik kaynaklı jeomorfolojik değişimlerin yoğunluk ve etki analizi [Intensity and impact analysis of anthropogenic geomorphological changes in İnegöl Basin (Bursa) using GIS]. Geomatik, 10(1), 92–110. https://doi.org/10.29128/geomatik.1537753
-
Karakoca, E., & Ünver, A. (2025). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması [Flood risk assessment and mapping in the Eşen River Basin using AHP and GIS]. Geomatik, 10(1), 127–143. https://doi.org/10.29128/geomatik.1542251
-
Partigöç, N. S., & Dinçer, C. (2024). Coğrafi bilgi sistemleri (CBS) tabanlı afet risk analizi: Denizli ili örneği [GIS-based disaster risk analysis: A case study of Denizli]. Geomatik, 9(1), 27–44. https://doi.org/10.29128/geomatik.1261051
-
Eminoğlu, Y., & Tarhan, Ç. (2025). Decadal evolution of GIS in disaster management and risk assessment. International Journal of Engineering and Geosciences, 10(2), 173–196. https://doi.org/10.26833/ijeg.1544048
-
Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59.
-
Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
-
Gull, A., & Mahmood, S. (2022). Spatio-temporal analysis and trend prediction of land cover changes using Markov chain model in Islamabad, Pakistan. Advanced GIS, 2(2), 52–61. https://publish.mersin.edu.tr/index.php/agis/article/view/679
-
Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
-
UN-Habitat. (2012). Developing local climate change plans: A guide for cities in developing countries. Cities and Climate Change Initiative Tool Series. https://www.uncclearn.org/resources/library/developing-local-climate-change-plans-a-guidefor-cities-in-developing-countries
-
Çelik, M. Ö., Kuşak, L., & Yakar, M. (2024). Assessment of groundwater potential zones utilizing geographic information system-based analytical hierarchy process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and technique for order preference by similarity to ideal solution methods: a case study in Mersin, Türkiye. Sustainability, 16(5), 2202.
-
Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
-
Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
-
Davis, S. D., & Frohlich, C. (1993). Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismological Research Letters, 64(3–4), 207–224. https://doi.org/10.1785/gssrl.64.3-4.207
-
Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences, 109(26), 10164–10168.
-
National Research Council. (2013). Induced seismicity potential in energy technologies. National Academies Press.
-
Chen, L., & Talwani, P. (2001). Mechanism of initial seismicity following impoundment of the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91(6), 1582–1594.
-
Gupta, H. K. (2022). Artificial water reservoir-triggered seismicity (RTS): Most prominent anthropogenic seismicity. Surveys in Geophysics, 43(2), 619–659. https://doi.org/10.1007/s10712-021-09675-z
-
Guha, S. K. (2013). Induced earthquakes. Springer Science & Business Media.
-
Gabrielsen, R. H., & Olesen, O. (2024). The concept of lineaments in geological structural analysis: Principles and methods: A review based on examples from Norway. Geomatics, 4(2), 189–212. https://doi.org/10.3390/geomatics4020011
-
Theilen-Willige, B., Aher, S. P., Gawali, P. B., & Venkata, L. B. (2016). Seismic hazard analysis along Koyna Dam area, Western Maharashtra, India: A contribution of remote sensing and GIS. Geosciences, 6(2), 20. https://doi.org/10.3390/geosciences6020020
-
Gahalaut, K., Paul, H., Sunilkumar, T. C., Kumar, M. R., & Gahalaut, V. K. (2023). Earthquakes induced by rapid loading of faults during Pulichintala reservoir impoundment in the stable continental region of India. Earth and Space Science, 10(10), e2023EA002902.
-
Arumugam, M., Kulandaisamy, P., Karthikeyan, S., Thangaraj, K., Senapathi, V., Chung, S. Y., ... & Manimuthu, S. (2023). An assessment of geospatial analysis combined with AHP techniques to identify groundwater potential zones in the Pudukkottai District, Tamil Nadu, India. Water, 15(6), 1101. https://doi.org/10.3390/w15061101
-
Romero-Andrade, R., Trejo-Soto, M. E., Nayak, K., Hernández-Andrade, D., & Bojorquez-Pacheco, N. (2023). Lineament analysis as a seismic precursor: The El Mayor Cucapah earthquake of April 4, 2010 (MW 7.2), Baja California, Mexico. Geodesy and Geodynamics, 14(2), 121–129. https://doi.org/10.1016/j.geog.2022.08.001
-
Sichugova, L., & Fazilova, D. (2021). The lineaments as one of the precursors of earthquakes: A case study of Tashkent geodynamical polygon in Uzbekistan. Geodesy and Geodynamics, 12(6), 399–404.
-
Plotnikova, L. M., Makhmudova, V. I., & Sigalova, O. B. (1992). Seismicity associated with the Charvak reservoir, Uzbekistan. Pure and Applied Geophysics, 139, 607–608. https://doi.org/10.1007/BF00879953
-
Umurzakov, R. A., & Muminov, M. Y. (2017). Studying of kinematics and elements of tension of blocks of the massif according to field geological observations. World Journal of Mechanics, 7, 243–254. https://doi.org/10.4236/wjm.2017.79020
-
Juliev, M., Pulatov, A., & Hubl, J. (2017). Natural hazards in mountain regions of Uzbekistan: A review of mass movement processes in Tashkent province. International Journal of Scientific & Engineering Research, 8(2), 1102.
-
Sichugova, L. V., & Fazilova, D. S. (2020). Structural interpretation of lineaments using satellite image processing: A case study in the vicinity of the Charvak Reservoir. In InterCarto. InterGIS. GI Support of Sustainable Development of Territories: Proceedings of the International Conference (Vol. 26, No. 2, p. 436).
-
Fazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences (Vol. 227, p. 04002). EDP Sciences.
-
Kadirhodjaev, A., Kadavi, P. R., Lee, C.-W., & Lee, S. (2018). Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: A case study of Mingchukur, Uzbekistan. Geosciences Journal, 22(6), 1053–1067. https://doi.org/10.1007/s12303-018-0052-x
-
Khamidov, L., Turapov, M., Mahkamov, S., Artikov, F., & Suyunov, S. (2021). Tracking the local seismicity level in the active influence zone of the southern Uzbekistan reservoirs. E3S Web of Conferences, 264, 02043. https://doi.org/10.1051/e3sconf/202126402043
-
Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.
-
Talwani, P., Cobb, J. S., & Schaeffer, M. F. (1999). In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina. Journal of Geophysical Research: Solid Earth, 104(B7), 14993–15003. https://doi.org/10.1029/1999JB900059
-
Do-Nascimento, A., Lunn, R. J., & Cowie, P. (2005). Numerical modeling of pore pressure diffusion in a reservoir-induced seismicity site in northeast Brazil. Geophysical Journal International, 160(1), 249–262. https://doi.org/10.1111/j.1365-246X.2005.02473.x
-
Tsay, O. (2019). Electronic map of faults of the Middle, Southern Tien Shan and adjacent territories. In Proceedings of the LI Tectonic Meeting “Fundamental Problems of Tectonics and Geodynamics” (Vol. 2, pp. 382–386). GEOS. http://www.ginras.ru/materials/files/MTS-2020-2%20.pdf
-
Arellano-Baeza, A. A., Zverev, A. T., & Malinnikov, V. A. (2006). Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the ASTER (Terra) satellite data. Advances in Space Research, 37(4), 690–697. https://doi.org/10.1016/j.asr.2005.07.068
-
Khamidov, L. A. (2010). Studying the stress fields of the Chatkal mountain zone of the Western Tien Shan. Geodynamics, 1(9), 57–66. http://dspace.nbuv.gov.ua/handle/123456789/60560
-
Abdikarimov, R. A., Eshmatov, K., Bobanazarov, Sh. P., Khojaev, D. A., & Eshmatov, B. K. (2011). Mathematical modeling and calculation of hydraulic structures of the dam-plate type considering seismic and hydrodynamic loads. Magazine of Civil Engineering, 3, 59–70.
-
Salyamova, K. D., Turdikulov, K. K., & Miftakhova, I. R. (2019). Calculation of high earthen dam taking into account the stressed condition and pore pressure (considering the data of natural observations). Bulletin of BSTU named after V. G. Shukhov, 7, 24–32. https://doi.org/10.34031/article_5d35d0b7694ea7.79490804
-
Khamidov, L. A., Alimukhamedov, I. M., Artikov, F. R., & Khamidov, H. L. (2020). Parameters of local geodynamics of the near zones of reservoirs. Seismology Problems, 1(2), 65–80.
-
Shevyrev, S., & Carranza, E. J. M. (2020). Modelling of geodynamic regimes of precious metal‐bearing porphyry deposits: Lazurnoe deposit (Sikhote–Alin Belt, Far East) case study. Geological Journal, 55(12), 8309–8328. https://doi.org/10.1002/gj.3935
-
Shevyrev, S., Gorobeyko, E., Carranza, E. J. M., & Boriskina, N. (2023). First-pass prospectivity mapping for Au–Ag mineralization in Sikhote–Alin Superterrane, Southeast Russia through field sampling, image enhancement on ASTER data, and MaxEnt modeling. Earth Science Informatics, 16, 695–716. https://doi.org/10.1007/s12145-022-00906-4
-
Soto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers & Geosciences, 57, 93–103. https://doi.org/10.1016/j.cageo.2013.03.019
-
Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis: Experimental results. Computers & Geosciences, 18(9), 1121–1126.
-
Moore, G. K. (1983). Objective procedures for lineament enhancement and extraction. Photogrammetric Engineering and Remote Sensing, 49(5), 641–647.
-
Shevyrev, S., & Boriskina, N. (2025). Analysis of structural position of Carlin-type gold deposits with lineament analysis of remote sensing data using pyLEFA software. Minerals, 15(3), 219. https://doi.org/10.3390/min15030219
-
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281–297). University of California Press.
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
-
Soenen, S. A., Peddle, D. R., Hall, R. G., Coburn, C. A., & Hall, F. G. (2010). Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment, 114(7), 1325–1337. https://doi.org/10.1016/j.rse.2009.12.012
-
Riaño, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Transactions on Geoscience and Remote Sensing, 41(5), 1056–1061. https://doi.org/10.1109/TGRS.2003.811693
-
Shevyrev, S. L. (2020). Programa avtomatizirovannogo primeneniya algoritma topograficheskoy korrektsii dlya izobrazheniy Landsat 8 OLI [Program for automated application of topographic correction for Landsat 8 OLI images]. Uspekhi Sovremennogo Estestvoznaniya, (10), 158–163. https://doi.org/10.17513/use.37506
-
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851
-
Hoelzle, M., Usubaliev, R., Gafurov, A., Kronenberg, M., Wagnon, P., Petrakov, D., & Kääb, A. (2017). Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods and Data Systems, 6(2), 397–418. https://doi.org/10.5194/gi-6-397-2017