Research Article
BibTex RIS Cite

Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data

Year 2026, Volume: 11 Issue: 1, 120 - 135, 01.10.2025
https://doi.org/10.26833/ijeg.1654590

Abstract

Understanding habitat suitability for Bullet Tuna (Auxis rochei) is crucial for sustainable fisheries management, yet limited studies have integrated geospatial modeling for this purpose, particularly in the Banda Sea, part of the Indonesian Coral Triangle. This study employs remote sensing and geospatial analysis to predict Bullet Tuna habitat suitability and fishing seasonality. Key oceanographic parameters, including sea surface temperature (SST), chlorophyll-a (CHL), sea surface salinity (SSS), sea surface height (SSH), and ocean current velocity (CUR), were derived from MODIS and Copernicus satellite products and integrated with catch per unit effort (CPUE) records from 2018 to 2022. The MaxEnt model was selected for its robustness in predicting species distribution from presence-only data, while remote sensing enables continuous monitoring of dynamic oceanographic conditions across broad spatial scales. The Fishing Season Index (FSI) was applied to determine seasonal fishing patterns, and validation was conducted using 2023 fishing data to verify model predictions. Results indicate that SSS and SSH are the most significant determinants of habitat suitability, with optimal ranges of 33.50–34.00 psu and 0.72–0.74 m, respectively. The peak fishing season occurs from December to March, coinciding with high habitat suitability values and elevated CPUE. These findings offer actionable insights for dynamic fisheries management, marine protected area planning, and real-time monitoring of Bullet Tuna habitats in the Banda Sea and broader Coral Triangle region.

References

  • Reimer, J. D., Albelda, R. L., Biondi, P., Hardianto, E., Huang, S., Masucci, G. D., Sayco, S. L. G., Wee, H. B., & Zhu, Y. (2022). Literature Review of Coral Reef Restoration in and Around the Coral Triangle From the Viewpoint of Marine Biodiversity. Arquivos de Ciências do Mar, 55(Especial), 413–431. https://doi.org/10.32360/acmar.v55iespecial.78183
  • Bailey, M., Flores, J., Pokajam, S., & Sumaila, U. R. (2012). Towards better management of Coral Triangle tuna. Ocean and Coastal Management, 63, 30–42. https://doi.org/10.1016/j.ocecoaman.2012.03.010
  • Barber, P. H., Cheng, S. H., Erdmann, M. V., Tenggardjaja, K., & Ambariyanto. (2011). Evolution and conservation of marine biodiversity in the Coral Triangle: Insights from stomatopod Crustacea. Phylogeography and Population Genetics in Crustacea, 9, 1–32. https://doi.org/10.1201/b11113-10
  • Cabral, R. B., & Geronimo, R. C. (2018). How important are coral reefs to food security in the Philippines? Diving deeper than national aggregates and averages. Marine Policy, 91, 136–141. https://doi.org/10.1016/j.marpol.2018.02.007
  • Cros, A., Fatan, N. A., White, A., Teoh, S. J., Tan, S., Handayani, C., Huang, C., Peterson, N., Li, R. V., Siry, H. Y., Fitriana, R., Gove, J., Acoba, T., Knight, M., Acosta, R., Andrew, N., & Beare, D. (2014). The Coral Triangle Atlas: An Integrated Online Spatial Database System for Improving Coral Reef Management. PLoS ONE, 9(6), 1–7. https://doi.org/10.1371/journal.pone.0096332
  • Mujiono, D. I. K., & Oktaviani, J. (2021). Segitiga Terumbu Karang Dunia (the Coral Triangle): Manfaat, Masalah Dan Upaya. Jurnal Dinamika Global, 6(1), 1–19. https://doi.org/10.36859/jdg.v6i01.405
  • Mohammad, H., Ebbah, J., Sahiyal, K., Tahıluddın, A. (2022). An assessment of small-scale fisheries in Tandubas, Tawi-Tawi, southern Philippines. Memba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 8(1), 10-22.
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616).
  • Cabral, R., Cruz-trinidad, A., Geronimo, R., & Aliño, P. (2012). Opportunities and Challenges in the Coral Triangle. Environmental Science & Technology, 46, 7930–7931. https://doi.org/10.1021/es3025462
  • Cruz-Trinidad, A., Aliño, P. M., Geronimo, R. C., & Cabral, R. B. (2014). Linking Food Security with Coral Reefs and Fisheries in the Coral Triangle. Coastal Management, 42(2), 160–182. https://doi.org/10.1080/08920753.2014.877761
  • Pameroy, R. S., Mascia, M. B., & Pollnac, R. B. (2007). Marine Protected Areas: The Social Dimension. In Report and documentation of the Expert Workshop on Marine Protected Areas and Fisheries Management: Review of Issues and Considerations (Rome, 12-14 June 2006) (FAO Fisheries Report No. 825, pp. 149-182). Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Pasaribu, I. F., Aprillia, N. A., Purba, T. P. B., Junianto, N. T., Andriani, N., Akbar, S., Wiranti, & Subekti, N. M. (2024). Case study of the application of the blue economy in making coral reefs a business commodity on Pari Island, Indonesia. International Journal of Fisheries and Aquatic Studies, 12(3), 84–91. https://doi.org/10.22271/fish.2024.v12.i3b.2937
  • Zainuddin, M., Safruddin, S., Farhum, A., Budimawan, B., Hidayat, R., Selamat, M. B., Wiyono, E. S., Ridwan, M., Syamsuddin, M., & Ihsan, Y. N. (2023). Satellite-Based Ocean Color and Thermal Signatures Defining Habitat Hotspots and the Movement Pattern for Commercial Skipjack Tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sensing, 15(1268), 1–22. https://doi.org/10.3390/rs15051268
  • Tadjuddah, M., Mustafa, A., Pangerang, U. K., & Yasidi, F. (2012). Application of satellite multi-sensor techniques to detect upwellings and potential fishing grounds in Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. Aquatic Ecosystem Health and Management, 15(3), 303–310. https://doi.org/10.1080/14634988.2012.709814
  • Haas, B., Fleming, A., McGee, J., & Haward, M. (2020). Regional fisheries organizations and sustainable development goals 13 and 14: Insights from stakeholders. Fisheries Research, 226, 1-8. https://doi.org/10.1016/j.fishres.2020.105529
  • United Nations Economic Commission for Latin America and the Caribbean. (2018). The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean. Santiago, Chile: Author. Retrieved from https://repositorio.cepal.org/bitstream/handle/11362/40156/25/S1801140_en.pdf
  • Vayghan, A. H., & Lee, M. A. (2022). Hotspot Habitat Modeling of Skipjack Tuna (Katsuwonus pelamis) in the Indian Ocean by Using Multisatellite Remote Sensing. Turkish Journal of Fisheries and Aquatic Sciences, 22(9), 1-10. https://doi.org/10.4194/TRJFAS19107
  • Çolak, H. E., & Memişoğlu, T. (2021). Thornthwaite iklim sınıflandırma yöntemine göre Karadeniz Bölgesi iklim sınır haritasının CBS ile üretilmesi. Geomatik, 6(1), 31-43. https://doi.org/ 10.29128/geomatik.651702
  • Aykut, N.O. (2019). İnsansız Hava Araçlarının Kıyı Çizgisinin Belirlenmesinde Kullanılabilirliğinin Araştırılması. Geomatik Dergisi, 4(2), 141-146. https://doi.org/ 10.29128/geomatik.503055
  • Altuntaş, C., & Tunalıoğlu, N. (2022). Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik, 7(3), 187-196. https://doi.org/ 10.29128/geomatik.946594
  • Safruddin, Hidayat, R., Dewi, Y. K., Omar, M. T., Farhum, S. A., Mallawa, A., & Zainuddin, M. (2020). The distribution of yellowfin tuna based on sea surface temperature and water depth parameters in the Bone Gulf, Indonesia. IOP Conference Series: Earth and Environmental Science, 564, 1–9. https://doi.org/10.1088/1755-1315/564/1/012064
  • Phillips, S. J., Anderson, R. P., & Scgapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096. https://doi.org/10.1016/j.dsr2.2006.01.007
  • Satrioajie, W. N., Suyadi, Syahailatua, A., & Wouthuyzen, S. (2018). The importance of the Banda Sea for tuna conservation area: A review of studies on the biology and the ecology of tuna. IOP Conference Series: Earth and Environmental Science, 184, 1–11. https://doi.org/10.1088/1755-1315/184/1/012004
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382. https://doi.org/10.1029/2004EO390002
  • Nurafifah, U. O., Zainuri, M., & Wirasatriya, A. (2022). Pengaruh ENSO dan IOD Terhadap Distribusi Suhu Permukaan Laut dan Klorofil-a Pada Periode Upwelling di Laut Banda. Indonesian Journal of Oceanography, 4(3), 74–85. https://doi.org/10.14710/ijoce.v4i3.14971
  • Safarov, S., Kamran, K. V., Ismayilov, V., & Safarov, E. (2024). Detection of upwelling events in the Caspian Sea using thermal satellite image processing. International Journal of Engineering and Geosciences, 9(2), 247–255. https://doi.org/10.26833/ijeg.1394363
  • Wahana, S., Suyuti, Y. D., Nur, M., & Nasyrah, A. F. A. (2021). Hubungan Panjang Bobot dan Beberapa Aspek Reproduksi Ikan Tongkol Lisong (Auxis rochei Risso, 1810) di Perairan Teluk Bone. Jurnal Airaha, 10(2), 241–247. https://doi.org/10.15578/ja.v10i02.271
  • Bintoro, G., Sutjipto, D. O., Lelono, T. D., Semedi, B., Sartimbul, A., & Wahyuni, M. T. (2023). Sustainable economic analysis and length weight relationship of Bullet Tuna (Auxis rochei) fishery in east area of Bali Strait, Indonesia. Biodiversitas, 24(6), 3528–3535. https://doi.org/10.13057/biodiv/d240651
  • Nur, M., Tenriware, & Nasyrah, A. F. A. (2023). Length-weight relationship and condition factor of bullet tuna (Auxis rochei Risso, 1810) in the waters of Mamuju District, West Sulawesi Province, Indonesia. Biodiversitas, 24(10), 5253–5259. https://doi.org/10.13057/biodiv/d241005
  • Ministry of Marine Affairs and Fisheries (KKP). (2024). Fisheries statistical data 2023. Retrieved from https://statistik.kkp.go.id/
  • Wiyono, E. S., & Ihsan. (2018). Abundance, fishing season and management strategy for blue swimming crab (Portunus pelagicus) in pangkajene kepulauan, South Sulawesi, Indonesia. Tropical Life Sciences Research, 29(1), 1–15. https://doi.org/10.21315/tlsr2018.29.1.1
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123. https://doi.org/10.20956/jipsp.v3i5.1944
  • Putri, A. R. S., Zainuddin, M., Musbir, Mustapha, M. A., & Hidayat, R. (2021). Mapping potential fishing zones for skipjack tuna in the southern Makassar Strait, Indonesia, using Pelagic Habitat Index (PHI). Biodiversitas, 22(7), 3037–3045. https://doi.org/10.13057/biodiv/d220758
  • Kaya, Y., Şenol, H. İ., Yiğit, A. Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117-123..
  • Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39(1), 387-394.
  • Hidayat, R., Zainuddin, M., Mallawa, A., Mustapha, M. A., & Putri, A. R. S. (2021). Mapping spatial-temporal skipjack tuna habitat as a reference for fish aggregating devices (FADs) settings in Makassar Strait, Indonesia. Biodiversitas, 22(9), 3637–3647. https://doi.org/10.13057/biodiv/d220905
  • Nurholis, Gaol, J. L., Syah, A. F., & Dewi, A. K. (2020). GIS-based spatio-temporal analysis on Yellow Fin Tuna catch in Eastern Indian Ocean off Sumatera. IOP Conference Series: Earth and Environmental Science, 429, 1–13. https://doi.org/10.1088/1755-1315/429/1/012041
  • Yuniar, A., Zainuddin, M., Hidayat, R., Srioktoviana, S. K., Safruddin, Mustapha, M. A., & Aisjah Farhum, S. (2024). Review: The effect of climate change on the distribution pattern of small pelagic fish around the world. Biodiversitas, 25(8), 3325–3341. https://doi.org/10.13057/biodiv/d250804
  • Mugo, R., Saitoh, S. I., Nihira, A., & Kuroyama, T. (2010). Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography, 19(5), 382–396. https://doi.org/10.1111/j.1365-2419.2010.00552.x
  • Syah, A. F., Yanti Siregar, E. S., Siregar, V. P., & Agus, S. B. (2020). Application of remotely sensed data and maximum entropy model in detecting potential fishing zones of Yellowfin tuna (Thunnus albacares) in the eastern Indian Ocean off Sumatera. Journal of Physics: Conference Series, 1569, 1–10. https://doi.org/10.1088/1742-6596/1569/4/042097
  • Siregar, E. S. Y., Siregar, V. P., Jhonnerie, R., Alkayakni, M., & Samsul, B. (2019). Prediction of potential fishing zones for yellowfin tuna (Thunnus albacares) using maxent models in Aceh province waters. IOP Conference Series: Earth and Environmental Science, 284, 1–13. https://doi.org/10.1088/1755-1315/284/1/012029
  • Mugo, R., & Saitoh, S. I. (2020). Ensemble Modelling of Skipjack Tuna (Katsuwonus pelamis) Habitats in the Western North Pacific Using Satellite Remotely Sensed Data; a Comparative Analysis Using Machine-Learning Models. Remote Sensing, 12(2591), 1-15. https://doi.org/10.3390/rs12162591
  • Teng, S. Y., Su, N. J., Lee, M. A., Lan, K. W., Chang, Y., Weng, J. S., Wang, Y. C., Sihombing, R. I., & Vayghan, A. H. (2021). Modeling the habitat distribution of acanthopagrus schlegelii in the coastal waters of the eastern taiwan strait using maxent with fishery and remote sensing data. Journal of Marine Science and Engineering, 9(1442), 1-17. https://doi.org/10.3390/jmse9121442
  • Akita, E. A., Gaol, J. L., & Amri, K. (2022). Maximum Entropy Model for Prediction of Small Pelagic Fishing Ground in the Java Sea. Jurnal Ilmu dan Teknologi Kelautan Tropis, 14(3), 449–461. https://doi.org/10.29244/jitkt.v14i3.45164
  • Alabia, I. D., Saitoh, S. I., Mugo, R., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T., & Seito, M. (2015). Identifying pelagic habitat hotspots of neon flying squid in the temperate waters of the central North Pacific. PLoS ONE, 10(11), 1-20. https://doi.org/10.1371/journal.pone.0142885
  • Yusop, S. M., & Mustapha, M. A. (2019). Influence of Oceanographic Parameters on the Seasonal Potential Fishing Grounds of Rastrelliger kanagurta using Maximum Entropy Models and Remotely Sensed Data. Sains Malaysiana, 48(2), 259–269. https://doi.org/10.17576/jsm-2019-4802-01
  • Maunder, M. N., & Punt, A. E. (2004). Standardizing catch and effort data: A review of recent approaches. Fisheries Research, 70, 141–159. https://doi.org/10.1016/j.fishres.2004.08.002
  • Hidayat, R., Zainuddin, M., Safruddin, S., Mallawa, A., & Farhum, S. A. (2019). Skipjack Tuna (Katsuwonus pelamis) catch in relation to the Thermal and Chlorophyll-a Fronts during May - July in the Makassar Strait. IOP Conference Series: Earth and Environmental Science, 253, 1–9. https://doi.org/10.1088/1755-1315/253/1/012045
  • Setiawati, M. D., Rachman, H. A., As-syakur, A. R., & Syahailatua, A. (2021). Identification of Commercial Tuna Hotspot in the Southern Waters of Java-Bali Through Satellite Remote Sensing Data. International Geoscience and Remote Sensing Symposium (IGARSS), 2, 7434–7437. https://doi.org/10.1109/igarss47720.2021.9555018
  • Mondal, S., Wang, Y. C., Lee, M. A., Weng, J. S., & Mondal, B. K. (2022). Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data. Remote Sensing, 14(5278), 1-16. https://doi.org/10.3390/rs14205278
  • Yen, K. W., Lu, H. J., Chang, Y., & Lee, M. A. (2012). Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. International Journal of Remote Sensing, 33(23), 7507–7522. https://doi.org/10.1080/01431161.2012.685973
  • Syamsuddin, M. L., Subiyanto, S., Bratasena, T., Syamsudin, F., Purba, N. P., Ihsan, Y. N., Puspita, A. R., Zainuddin, M., & Nofrita, N. (2024). Satellite-derived prediction on habitat modelling of skipjack tuna (Katsuwonus pelamis) in the Makassar Strait, Indonesia. Geocarto International, 39(1), 1–21. https://doi.org/10.1080/10106049.2024.2408281
  • Dajan, A. (1986). Pengantar Metode Statistik (Jilid I.). Jakarta: LP3ES.
  • Cui, W., Yang, J., Jia, Y., & Zhang, J. (2022). Oceanic Eddy Detection and Analysis from Satellite-Derived SSH and SST Fields in the Kuroshio Extension. Remote Sensing, 14(5776), 1-18. https://doi.org/10.3390/rs14225776
  • Solanki, H. U., Bhatpuria, D., & Chauhan, P. (2015). Signature analysis of satellite derived SSHa, SST and chlorophyll concentration and their linkage with marine fishery resources. Journal of Marine Systems, 150, 12-21. https://doi.org/10.1016/j.jmarsys.2015.05.004
  • Beşel, C., & Kayıkçı, E. T. (2020). Investigation of Black Sea Mean Sea Level Variability By Singular Spectrum Analysis. International Journal of Engineering and Geosciences, 5(1), 33–41. https://doi.org/10.26833/ijeg.580510
  • Nugraha, E., Santoso, D. W. A., Hermawan, M., Husen, E. S., Hutajulu, J., Kemhay, D., Annur, M. Y., Sepri, Putri, E. T., & Purwanto, Y. (2024). Mapping bullet tuna (Auxis rochei) potential fishing grounds in Prigi waters, East Java, Indonesia, using satellite imagery and in-situ oceanographic parameters. AACL Bioflux, 17(5), 2043–2058.
  • Srioktoviana, S. K., Zainuddin, M., Hidayat, R., Yuniar, A., Mustapha, M. A., Farhum, S. A., & Safruddin. (2024). Exploring the relationship between salinity front and the distribution and abundance of Yellowfin Tuna ( Thunnus albacares) in the Western Banda Sea, Center of Indonesia Coral Triangle. IOP Conference Series: Earth and Environmental Science, 1410, 1-10. https://doi.org/10.1088/1755-1315/1410/1/012040
  • Nacef, L., Bachari, N. E. I., Bouda, A., & Boubnia, R. (2016). Variability and Decadal Evolution of Temperature and Salinity in the Mediterranean Sea Surface. International Journal of Engineering and Geosciences, 1(1), 20–29. https://doi.org/10.26833/ijeg.285222
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
  • Tangke, U., & Senen, B. (2020). Distribution of sea surface temperature and chlorophyll-a concentration its correlation with small pelagic fish catch in Dodinga Bay. IOP Conference Series: Earth and Environmental Science, 584, 1-9. https://doi.org/10.1088/1755-1315/584/1/012020
  • Lehodey, P., Senina, I., & Murtugudde, R. (2008). A spatial ecosystem and populations dynamics model (SEAPODYM) - Modeling of tuna and tuna-like populations. Progress in Oceanography, 78, 304–318. https://doi.org/10.1016/j.pocean.2008.06.004
  • Yuniar, A., Zainuddin, M., Srioktoviana, S. K., Mustapha, M. A., Farhum, A., & Safruddin. (2024). Relationship between eddy and scads (Decapterus spp.) abundance in the northwest of Banda Sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 1410, 1-8. https://doi.org/10.1088/1755-1315/1410/1/012039
  • Sambah, A. B., Noor’izzah, A., Intyas, C. A., Widhiyanuriyawan, D., Affandy, D. P., & Wijaya, A. (2023). Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia. Biodiversitas, 24(5), 2689–2700. https://doi.org/10.13057/biodiv/d240522
  • Yakar M, Yılmaz H M & Mutluoǧlu Ö (2010). Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers in Eng,19, 331-345. https://doi.org/10.1002/ece3.5913
  • Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE, 8(2), 1-10. https://doi.org/10.1371/journal.pone.0055158
  • Gemmell, O. M., Rooper, C. N., Doherty, B., P.cox, S., & Kronlund, A. R. (2025). Presence-only fisheries bycatch data produce biased species distribution predictions for Alcyonacean corals on British Columbia’s continental shelf and slope. Canadian Journal of Fisheries and Aquatic Sciences, 82, 1–15. https://doi.org/10.1139/cjfas-2023-0088
  • Merow, C., Allen, J. M., Aiello-Lammens, M., & Silander, J. A. (2016). Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information. Global Ecology and Biogeography, 1–15. https://doi.org/10.1111/geb.12453
  • Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., & Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 60(5), 757–776. https://doi.org/10.1111/j.1467-9876.2011.01023.x
  • Smith, J. N., Kelly, N., & Renner, I. W. (2020). Validation of presence-only models for conservation planning and the application to whales in a multiple-use marine park. Ecological Applications, 31(1), 1–14. https://doi.org/10.1002/eap.2214
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
  • Aryasuta, P. C., Dirgayusa, I. G. N. P., & Puspitha, N. L. P. R. (2020). Comparison of Productivity of Hand Line and Gillnet Fishing of Fishermen of Kusamba Village, Klungkung, Bali on the Catch of Mackarel Tuna (Auxis sp.). Journal of Marine and Aquatic Sciences, 6(2), 246-252. https://doi.org/10.24843/jmas.2020.v06.i02.p12
There are 73 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Siti Khadijah Srioktoviana 0009-0006-3732-1504

Mukti Zainuddin 0000-0003-2018-7143

Musbir Musbir 0000-0001-9447-7990

Muzzneena Ahmad Mustapha 0000-0003-4533-3573

Rachmat Hidayat 0000-0003-1664-0515

Alfira Yuniar 0009-0000-2124-4686

Early Pub Date August 25, 2025
Publication Date October 1, 2025
Submission Date March 10, 2025
Acceptance Date June 5, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Srioktoviana, S. K., Zainuddin, M., Musbir, M., … Mustapha, M. A. (2025). Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data. International Journal of Engineering and Geosciences, 11(1), 120-135. https://doi.org/10.26833/ijeg.1654590
AMA Srioktoviana SK, Zainuddin M, Musbir M, Mustapha MA, Hidayat R, Yuniar A. Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data. IJEG. October 2025;11(1):120-135. doi:10.26833/ijeg.1654590
Chicago Srioktoviana, Siti Khadijah, Mukti Zainuddin, Musbir Musbir, Muzzneena Ahmad Mustapha, Rachmat Hidayat, and Alfira Yuniar. “Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis Rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data”. International Journal of Engineering and Geosciences 11, no. 1 (October 2025): 120-35. https://doi.org/10.26833/ijeg.1654590.
EndNote Srioktoviana SK, Zainuddin M, Musbir M, Mustapha MA, Hidayat R, Yuniar A (October 1, 2025) Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data. International Journal of Engineering and Geosciences 11 1 120–135.
IEEE S. K. Srioktoviana, M. Zainuddin, M. Musbir, M. A. Mustapha, R. Hidayat, and A. Yuniar, “Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data”, IJEG, vol. 11, no. 1, pp. 120–135, 2025, doi: 10.26833/ijeg.1654590.
ISNAD Srioktoviana, Siti Khadijah et al. “Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis Rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data”. International Journal of Engineering and Geosciences 11/1 (October2025), 120-135. https://doi.org/10.26833/ijeg.1654590.
JAMA Srioktoviana SK, Zainuddin M, Musbir M, Mustapha MA, Hidayat R, Yuniar A. Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data. IJEG. 2025;11:120–135.
MLA Srioktoviana, Siti Khadijah et al. “Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis Rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data”. International Journal of Engineering and Geosciences, vol. 11, no. 1, 2025, pp. 120-35, doi:10.26833/ijeg.1654590.
Vancouver Srioktoviana SK, Zainuddin M, Musbir M, Mustapha MA, Hidayat R, Yuniar A. Geospatial Modeling of Habitat Suitability and Seasonal Variability of Bullet Tuna (Auxis rochei) in the Central Indonesian Coral Triangle Using Remote Sensing Data. IJEG. 2025;11(1):120-35.