Research Article
BibTex RIS Cite

GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh

Year 2026, Volume: 11 Issue: 1, 136 - 148, 01.10.2025
https://doi.org/10.26833/ijeg.1656666

Abstract

This investigation examines the semi-variogram models to create a more accurate seismic intensity map in terms of the modified Mercalli intensity (MMI) map of Dinajpur District, Bangladesh. Since Dinajpur District has been listed as a seismically disaster-prone region in the World, an intensity map is crucial and necessary for construction. A large number of significant earthquakes have occurred in this region. Using Geographic Information Technology, MMI map for the study region was created using these earthquakes. To make the MMI map, at first the shear wave velocity (Vs) was calculated using soil investigation reports, comprising 148 boreholes with standard penetration test values (SPT-N). The widely used empirical equations were used to convert the Vs to site amplification factor (AF) and to calculate the Peak Ground Acceleration (PGA). Then, using PGA and AF, the surface acceleration (SA) for the research region was determined. The SA has finally been converted into the MMI map. The results demonstrate that the least and maximum PGA are 0.07 g and 0.094 g, while the AF ranges from 2.13 to 3.15 between the minimum and maximum. Moreover, the SA varies between 0.17g and 0.28g. The MMI map revels that 8.43% of areas having intensity VII and 91.57% having intensity VIII will be affected for Dinajpur Sadar Upazila. The prepared map may be beneficial to design seismically stable structures in the research region.

Ethical Statement

No conflict of interest

Supporting Institution

Not applicable

References

  • Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Medical & Health Policy, 2(2), 7-33. https://doi.org/10.2202/1948-4682.1069
  • Abbasi, A., Hossain, L., Hamra, J., & Owen, C. (2010, December). Social networks perspective of firefighters' adaptive behavior and coordination among them. In 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing (pp. 819-824). IEEE.
  • Morino, M., Kamal, A. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., & Kaneko, F. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218-226. https://doi.org/10.1016/j.jseaes.2014.06.002
  • Morino, M., Kamal, A. M., Muslim, D., Ali, R. M. E., Kamal, M. A., Rahman, M. Z., & Kaneko, F. (2011). Seismic event of the Dauki Fault in 16th century confirmed by trench investigation at Gabrakhari Village, Haluaghat, Mymensingh, Bangladesh. Journal of Asian Earth Sciences, 42(3), 492-498. https://doi.org/10.1016/j.jseaes.2011.05.002
  • Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615-618. https://doi.org/10.1038/ngeo2760
  • Bilham, R. (2009). The seismic future of cities. Bulletin of earthquake engineering, 7, 839-887. https://doi.org/10.1007/s10518-009-9147-0
  • Bilham, R. (2004). Earthquakes in India and the Himalaya: tectonics, geodesy and history. Annals of GEOPHYSICS, 47(2-3). https://doi.org/10.4401/ag-3338
  • Wood, H. O., & Neumann, F. (1931). Modified Mercalli intensity scale of 1931. Bulletin of the Seismological Society of America, 21(4), 277-283. https://doi.org/10.1785/BSSA0210040277
  • Stover, C. W., & Coffman, J. L. (1992). Seismicity of the United States, 1568-1989 (revised). US Government Printing Office.
  • Bakun, W. H., Johnston, A. C., & Hopper, M. G. (2003). Estimating locations and magnitudes of earthquakes in eastern North America from modified Mercalli intensities. Bulletin of the Seismological Society of America, 93(1), 190-202. https://doi.org/10.1785/ 0120020087
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
  • Yilmaz, H. M., Yakar, M., Yildiz, F., Karabork, H., Kavurmaci, M. M., Mutluoglu, O., & Goktepe, A. (2009). Monitoring of corrosion in fairy chimney by terrestrial laser scanning. Journal of International Environmental Application & Science, 4(1), 86-91.
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244..
  • Civelekler, E. (2023). Using GIS for the allowable soil bearing capacity estimation according to the Terzaghi (1943) equation in Eskişehir city center, Türkiye. International Journal of Engineering and Geosciences, 8(3),310-317. https://doi.org/10.26833/ijeg.1212584
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences,7(3),302-313.
  • Rahman, M. M. (2025). GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. International Journal of Engineering and Geosciences, 10(3), 329-338. https://doi.org/10.26833/ijeg.1589939
  • Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59.
  • Çelik, M. Ö., Kuşak, L., & Yakar, M. (2024). Assessment of groundwater potential zones utilizing geographic information system-based analytical hierarchy process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and technique for order preference by similarity to ideal solution methods: a case study in Mersin, Türkiye. Sustainability, 16(5), 2202.
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.
  • Yakar, M. (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.
  • Yakar, M., Yıldız, F., Uray, F., & Metin, A. (2010, June). Photogrammetric Measurement of The Meke Lake and Its Environment with Kite Photographs to Monitoring of Water Level to Climate Change. In ISPRS Commission V Mid-Term Symposium (pp. 613-616).
  • Ünel, F. B., Kuşak, L., Yakar, M., & Doğan, H. (2023). Coğrafi bilgi sistemleri ve analitik hiyerarşi prosesi kullanarak Mersin ilinde otomatik meteoroloji gözlem istasyonu yer seçimi. Geomatik, 8(2), 107-123.
  • Jefferson, T. L., & Johannes, T. W. (2016). Using geographic information systems to support decision making in disaster response. Intelligent Decision Technologies, 10(2), 193-207. https://doi.org/10.3233/IDT-160255.
  • Irwansyah, E., & Hartati, S. (2014). Assessment of building damage hazard caused by earthquake: integration of FNN and GIS. Ieri Procedia, 10, 196-202. https://doi.org/10.1016/j.ieri.2014.09.077
  • Huang, M., Zhang, D., Li, P., Zhang, Y., & Zhang, R. (2017, July). Study of earthquake disaster prediction system of Langfang city based on GIS. In IOP conference series: Materials science and engineering (Vol. 224, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1757899X/224/1/012049
  • Rahman, M. Z., Siddiqua, S., & Kamal, A. M. (2020). Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh. Natural Hazards, 103, 2489-2532. https://doi.org/10.1007/s11069-020-04094-6
  • Liu, P., & Ren, T. (2022). Aria’s intensity attenuation relationship in Sichuan–Yunnan region, China. Bulletin of Earthquake Engineering, 20(12), 6377-6406. https://doi.org/10.1007/s10518-022-01467-z
  • Aziz, M. K. B. M., Yusof, F., Daud, Z. M., Yusop, Z., & Kasno, M. A. (2019). Comparison of semivariogram models in rain gauge network design. Matematika, 157-170. https://doi.org/10.11113/matematika.v35.n2.1155
  • Rahman, M. M., Thakur, S., Ahmed, S. T., Yasmin, R. (2025). GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. International Journal of Engineering and Geosciences, Volume (Issue), page numbers. (Accepted)
  • Al Zaman, M. D. A., & Monira, N. J. (2017). A study of earthquakes in Bangladesh and the data analysis of the earthquakes that were generated in Bangladesh and its’ very close regions for the last forty years (1976-2016). J Geol Geophys, 6(300), 2. https://doi.org/10.4172/2381-8719.1000300
  • Ansary, M. A., Islam, M. R., Sarker, J. K., & Safiullah, A. M. M. (2009). Loss assessment of Sylhet city from an event similar to 1918 Srimangal earthquake. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4) (pp. 2715-2718). IOS Press.
  • Bilham, R., Gaur, V. K., & Molnar, P. (2001). Himalayan seismic hazard. Science, 293(5534), 1442-1444. https://doi.org/10.1126/science.1062584
  • Tabassum, T., & Ansary, M. A. (2020). Strong ground motion in Bangladesh and North-East Indian Region from 2005 to 2017 and its prediction of attenuation data during future earthquakes. Geotechnical and Geological Engineering, 38, 6011-6029. https://doi.org/10.1007/s10706-020-01410-6
  • Patel, R. S., & Sinha, A. K. (2024). Seismic magnitude homogenization by unified regression method and its effect on seismicity parameters. Journal of Seismology, 28(2), 417-437. https://doi.org/10.1007/s10950-024-10197-5
  • Alam, E., & Dominey-Howes, D. (2016). A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal. Natural Hazards, 81(3), 2031-2102. https://doi.org/10.1007/s11069-016-2174-7
  • McGuire, R. K. (1978). Seismic ground motion parameter relations. Journal of the Geotechnical Engineering Division, 104(4), 481-490. https://doi.org/10.1061/AJGEB6.0000615
  • Milne, W. G., & Davenport, A. G. (1969). Distribution of earthquake risk in Canada. Bulletin of the Seismological Society of America, 59(2), 729-754. https://doi.org/10.1785/BSSA0590020729
  • Denham, D., & Small, G. R. (1971). Strong motion data centre: Bureau of mineral resources, Canada. Bulletin of the New Zealand Society for Earthquake Engineering, 4(1),15-30. https://doi.org/10.5459/bnzsee.4.1.15-30
  • Esteva, L., & Villaverde, R. (1973, June). Seismic risk, design spectra and structural reliability. In Proceedings of fifth world conference on earthquake engineering (Vol. 2, pp. 2586-2596).
  • Orphal, D. L., & Lahoud, J. A. (1974). Prediction of peak ground motion from earthquakes. Bulletin of the Seismological Society of America, 64(5), 1563-1574.https://doi.org/10.1785/BSSA0640051563
  • Joyner, W. B., & Boore, D. M. (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bulletin of the seismological Society of America, 71(6), 2011-2038. https://doi.org/10.1785/BSSA0710062011
  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of seismology, 10, 225-236. https://doi.org/10.1007/s10950-006-9012-4
  • Sipkin, S. A. (2003). A correction to body-wave magnitude mb based on moment magnitude Mw. Seismological Research Letters, 74(6), 739-742. https://doi.org/10.1785/gssrl.74.6.739
  • Hossain, M. S., Khan, M. S. H., Chowdhury, K. R., & Abdullah, R. (2019). Synthesis of the tectonic and structural elements of the Bengal Basin and its surroundings. Tectonics and structural geology: Indian context, 135-218.
  • Lee, S. H. H. (1990). Regression models of shear wave velocities in Taipei basin. Journal of the Chinese Institute of Engineers, 13(5), 519-532. https://doi.org/10.1080/02533839.1990.9677284
  • Lee, S. H. H. (1992). Analysis of the multicollinearity of regression equations of shear wave velocities. Soils and foundations, 32(1), 205-214. https://doi.org/10.3208/sandf1972.32.205
  • Boore, D. M. (2004). Estimating V s (30) (or NEHRP site classes) from shallow velocity models (depths< 30 m). Bulletin of the seismological society of America,94(2),591-597. https://doi.org/10.1785/ 0120030105
  • Boore, D. M. (2013). NGA-West2 equations for predicting response spectral accelerations for shallow crustal earthquakes. Pacific Earthquake Engineering Research Center. 49. Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113EQS184M
  • Das, S. K., Hasan, M. N., & Alam, M. J. B. (2019). Probable intensity of Sylhet city from an event like 1918 Srimangal earthquake. SN Applied Sciences, 1, 1-8. https://doi.org/10.1007/s42452-019-1679-6
  • Trifunac, M. D., & Brady, A. G. (1975). On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65(1), 139-162. https://doi.org/10.1785/BSSA0650010139
  • Yilmaz, H. M., Yakar, M., Yildiz, F., Karabork, H., Kavurmaci, M. M., Mutluoglu, O., & Goktepe, A. (2010). Determining rates of erosion of an earth pillar by terrestrial laser scanning. Arab. J. Sci. Eng, 35, 163-172.
  • Jian, X., Olea, R. A., & Yu, Y. S. (1996). Semivariogram modeling by weighted least squares. Computers & Geosciences, 22(4), 387-397. https://doi.org/10.1016/0098-3004(95)00095-X
  • Rishikeshan, C. A., Katiyar, S. K., & Mahesh, V. V. (2014, November). Detailed evaluation of DEM interpolation methods in GIS using DGPS data. In 2014 International Conference on Computational Intelligence and Communication Networks (pp. 666-671). IEEE. https://doi.org/10.1109/CICN.2014.148
  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John Wiley & Sons.
  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field‐scale variability of soil properties in central Iowa soils. Soil science society of America journal, 58(5), 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x
  • Udobi, J. I., Osuji, G. A., Onyeagu, S. I., & Obiora-Ilouno, H. O. (2021). Influence function and bootstrap methods of estimating the standard errors of the estimators of mixture exponential distribution parameter. Earthline Journal of Mathematical Sciences, 7(1), 113-136. https://doi.org/10.1002/9781118165485
  • Sugito, N. T., Gumilar, I., Hernandi, A., Handayani, A. P., & Dede, M. (2023). Utilizing semi-variograms and geostatistical approach for land value model in urban region. Int. J. Eng, 36(12), 2222-2231. https://doi.org/10.5829/IJE.2023.36.12C.12
  • Hassan, W., Alshameri, B., Nawaz, M. N., Ijaz, Z., & Qasim, M. (2022). Geospatial and statistical interpolation of geotechnical data for modeling zonation maps of Islamabad, Pakistan. Environmental Earth Sciences, 81(24), 547. https://doi.org/10.1007/s12665-022-10669-2
There are 58 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Md Mahabub Rahman 0000-0003-1580-483X

Maharullah Sarder 0009-0003-5098-1003

Early Pub Date August 25, 2025
Publication Date October 1, 2025
Submission Date March 12, 2025
Acceptance Date June 1, 2025
Published in Issue Year 2026 Volume: 11 Issue: 1

Cite

APA Rahman, M. M., & Sarder, M. (2025). GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh. International Journal of Engineering and Geosciences, 11(1), 136-148. https://doi.org/10.26833/ijeg.1656666
AMA Rahman MM, Sarder M. GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh. IJEG. October 2025;11(1):136-148. doi:10.26833/ijeg.1656666
Chicago Rahman, Md Mahabub, and Maharullah Sarder. “GIS-Based Semi-Variogram Model Selection for the Preparation of Modified Mercalli Intensity Map of Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences 11, no. 1 (October 2025): 136-48. https://doi.org/10.26833/ijeg.1656666.
EndNote Rahman MM, Sarder M (October 1, 2025) GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh. International Journal of Engineering and Geosciences 11 1 136–148.
IEEE M. M. Rahman and M. Sarder, “GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh”, IJEG, vol. 11, no. 1, pp. 136–148, 2025, doi: 10.26833/ijeg.1656666.
ISNAD Rahman, Md Mahabub - Sarder, Maharullah. “GIS-Based Semi-Variogram Model Selection for the Preparation of Modified Mercalli Intensity Map of Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences 11/1 (October2025), 136-148. https://doi.org/10.26833/ijeg.1656666.
JAMA Rahman MM, Sarder M. GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh. IJEG. 2025;11:136–148.
MLA Rahman, Md Mahabub and Maharullah Sarder. “GIS-Based Semi-Variogram Model Selection for the Preparation of Modified Mercalli Intensity Map of Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences, vol. 11, no. 1, 2025, pp. 136-48, doi:10.26833/ijeg.1656666.
Vancouver Rahman MM, Sarder M. GIS-based semi-variogram model selection for the preparation of Modified Mercalli Intensity map of Dinajpur Sadar, Bangladesh. IJEG. 2025;11(1):136-48.