Research Article
BibTex RIS Cite
Year 2020, , 49 - 59, 01.02.2020
https://doi.org/10.26833/ijeg.581584

Abstract

References

  • Berber M. (2006), Robustness Analysis of Geodetic Networks Technical Report, University of New Brunswick, New Brunswick, Canada, 121 ss.
  • Bektaş S., Şişman Y. (2010) The Comparison of L1 ve L2-norm minimization methods, International, Journal of Physical Sciences, 5 (11), 1721-1727.
  • Canıtez N., (1997), Jeofizikte Modelleme, Literatür Yayıncılık, İstanbul, Türkiye, 368 ss.
  • Dilaver A, Konak H., Çepni M. S., (1998), Jeodezik Ağlarda Uyuşumsuz Ölçülerin Yerelleştirilmesinde Kullanılan Yöntemlerin Davranışları, Harita ve Kadastro Mühendisliği Dergisi, Ankara, 84 (1), 17-34.
  • Hekimoğlu, Ş. (2005), Increasing Reliability of the Tests for Outliers Whose Magnitude is Small, Survey Review, 38 (298), 274-285.
  • Herring T. A., King R. W., Floyd M. A., McClusky S. C., GAMIT Reference Manual, http://wwwgpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf, 2015.
  • Herring T. A., King R. W., Floyd M. A., McClusky S. C., Introduction to GAMIT/ GLOBK, http://wwwgpsg.mit.edu/~simon/gtgk/Intro_GG.pdf, 2015.
  • Konak H., Dilaver A (1998), Jeodezik Ağlarda Uyuşumsuz Ölçülerin Yerelleştirilmesinde Kullanılan Yöntemlerin Davranışları -II, -Fuzzy Logic (Bulanık Mantık) Yaklaşımı, Harita ve Kadastro Mühendisliği Dergisi, Ankara, 85(1), 91-109.
  • Konak, H., Dilaver, A., Öztürk, E., (2005), Effects of Observation Plan and Precision on the Duration of Outliers Detection and Fuzzy Logic: A Real Network Application, Survey Review, (38) 298, 331–341.
  • Niemeier W., (2002), Ausgleichungsrechnung, Walter de Gruyter Kehrbuch, Berlin, Germany – New York, USA, 407 ss.
  • Öcalan T., (2019) Investigation Common Points in 2D Transformation Problem, International Journal of Engineering and Geosciences, 4 (2), 58-62.
  • Öztürk E., Şerbetçi M, (1992), Dengeleme Hesabı Cilt III, KTÜ Yayınları, 2. Baskı, Yayın No: 144/40, Trabzon, Türkiye, 558 ss.
  • Küreç Nehbit P., (2018), GPS/GNSS Ağları için Sürekli Bir Gerinim İzleme ve Kalite Değerlendirme Stratejisi, Doktora Tezi, Kocaeli Üniversitesi, Kocaeli, Türkiye.
  • Vanicek P., Krakiwsky E. J., Craymer M. R. Gao Y., Ong P. S. (1990), Robustness Analysis, Technical Report, University of New Brunswick, New Brunswick, Canada.
  • Yetkin M., (2012), GNSS Gözlemlerinin Robust Kestirimi ve Robustluk Analizi Yöntemleriyle Değerlendirilmesi Üzerine Bir İnceleme, Selçuk Üniversitesi, Konya, Türkiye.
  • Yıldırım. Ü. K., Şişman Y. (2019) The Deformation Analysis Using Hypothesis Tests, International, Journal of Engineering and Geosciences, 4 (2), 88-93.

Interpreting deformation results of geodetic network points using the strain models based on different estimation methods

Year 2020, , 49 - 59, 01.02.2020
https://doi.org/10.26833/ijeg.581584

Abstract

Geodetic Networks designed as Deformation Networks or Continuous Networks are observed in different epochs/ sessions and evaluated as a function of time. Those can be design as global GNSS networks for aim monitoring active tectonic movements or as regional densification geodetic and deformation networks for monitoring local earthquakes and surface movements. The areas covered geodetic networks are assumed as any surface on ellipsoid or sphere. Characteristics of surfaces are analyzed with Geometric Strain Models using deformation data on surface points. In this case, effect rates on geodetic network area are determined from local surface movements or regional active earthquakes and interpreted as experimental. On the other hand, undetermined outliers by model hypothesis test affect coordinate unknowns separately. Outliers cause deformations in certain magnitude on networks points. Therefore, network points strain in different rates and directions. Query of maximum affects caused by these strain rates is a referenced reliability method called "Robustness Analysis in Geodetic Networks”. Mentioned strain rates are modelled by various estimation methods. Thus, deformation results could be interpreted together by the obtained strain components and deformation vector. In this paper, possible strain components belonging to network points are determined with methods of L1 Norm, Least Median Squares (LMS) and Least Squares Estimation (LSE). These estimation methods are tested on KOUSAGA (Kocaeli University Permanent GPS Network). Strain components are estimated by use polyhedrons covered by network points. Obtained results are compared and analyzed according to weakness and strengths of proposed estimation methods.

References

  • Berber M. (2006), Robustness Analysis of Geodetic Networks Technical Report, University of New Brunswick, New Brunswick, Canada, 121 ss.
  • Bektaş S., Şişman Y. (2010) The Comparison of L1 ve L2-norm minimization methods, International, Journal of Physical Sciences, 5 (11), 1721-1727.
  • Canıtez N., (1997), Jeofizikte Modelleme, Literatür Yayıncılık, İstanbul, Türkiye, 368 ss.
  • Dilaver A, Konak H., Çepni M. S., (1998), Jeodezik Ağlarda Uyuşumsuz Ölçülerin Yerelleştirilmesinde Kullanılan Yöntemlerin Davranışları, Harita ve Kadastro Mühendisliği Dergisi, Ankara, 84 (1), 17-34.
  • Hekimoğlu, Ş. (2005), Increasing Reliability of the Tests for Outliers Whose Magnitude is Small, Survey Review, 38 (298), 274-285.
  • Herring T. A., King R. W., Floyd M. A., McClusky S. C., GAMIT Reference Manual, http://wwwgpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf, 2015.
  • Herring T. A., King R. W., Floyd M. A., McClusky S. C., Introduction to GAMIT/ GLOBK, http://wwwgpsg.mit.edu/~simon/gtgk/Intro_GG.pdf, 2015.
  • Konak H., Dilaver A (1998), Jeodezik Ağlarda Uyuşumsuz Ölçülerin Yerelleştirilmesinde Kullanılan Yöntemlerin Davranışları -II, -Fuzzy Logic (Bulanık Mantık) Yaklaşımı, Harita ve Kadastro Mühendisliği Dergisi, Ankara, 85(1), 91-109.
  • Konak, H., Dilaver, A., Öztürk, E., (2005), Effects of Observation Plan and Precision on the Duration of Outliers Detection and Fuzzy Logic: A Real Network Application, Survey Review, (38) 298, 331–341.
  • Niemeier W., (2002), Ausgleichungsrechnung, Walter de Gruyter Kehrbuch, Berlin, Germany – New York, USA, 407 ss.
  • Öcalan T., (2019) Investigation Common Points in 2D Transformation Problem, International Journal of Engineering and Geosciences, 4 (2), 58-62.
  • Öztürk E., Şerbetçi M, (1992), Dengeleme Hesabı Cilt III, KTÜ Yayınları, 2. Baskı, Yayın No: 144/40, Trabzon, Türkiye, 558 ss.
  • Küreç Nehbit P., (2018), GPS/GNSS Ağları için Sürekli Bir Gerinim İzleme ve Kalite Değerlendirme Stratejisi, Doktora Tezi, Kocaeli Üniversitesi, Kocaeli, Türkiye.
  • Vanicek P., Krakiwsky E. J., Craymer M. R. Gao Y., Ong P. S. (1990), Robustness Analysis, Technical Report, University of New Brunswick, New Brunswick, Canada.
  • Yetkin M., (2012), GNSS Gözlemlerinin Robust Kestirimi ve Robustluk Analizi Yöntemleriyle Değerlendirilmesi Üzerine Bir İnceleme, Selçuk Üniversitesi, Konya, Türkiye.
  • Yıldırım. Ü. K., Şişman Y. (2019) The Deformation Analysis Using Hypothesis Tests, International, Journal of Engineering and Geosciences, 4 (2), 88-93.
There are 16 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Haluk Konak 0000-0003-2554-8905

Pakize Küreç Nehbit 0000-0003-2669-0401

Aslıhan Karaöz 0000-0003-2371-8958

Fazilet Cerit This is me 0000-0002-0524-4237

Publication Date February 1, 2020
Published in Issue Year 2020

Cite

APA Konak, H., Küreç Nehbit, P., Karaöz, A., Cerit, F. (2020). Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences, 5(1), 49-59. https://doi.org/10.26833/ijeg.581584
AMA Konak H, Küreç Nehbit P, Karaöz A, Cerit F. Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. IJEG. February 2020;5(1):49-59. doi:10.26833/ijeg.581584
Chicago Konak, Haluk, Pakize Küreç Nehbit, Aslıhan Karaöz, and Fazilet Cerit. “Interpreting Deformation Results of Geodetic Network Points Using the Strain Models Based on Different Estimation Methods”. International Journal of Engineering and Geosciences 5, no. 1 (February 2020): 49-59. https://doi.org/10.26833/ijeg.581584.
EndNote Konak H, Küreç Nehbit P, Karaöz A, Cerit F (February 1, 2020) Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences 5 1 49–59.
IEEE H. Konak, P. Küreç Nehbit, A. Karaöz, and F. Cerit, “Interpreting deformation results of geodetic network points using the strain models based on different estimation methods”, IJEG, vol. 5, no. 1, pp. 49–59, 2020, doi: 10.26833/ijeg.581584.
ISNAD Konak, Haluk et al. “Interpreting Deformation Results of Geodetic Network Points Using the Strain Models Based on Different Estimation Methods”. International Journal of Engineering and Geosciences 5/1 (February 2020), 49-59. https://doi.org/10.26833/ijeg.581584.
JAMA Konak H, Küreç Nehbit P, Karaöz A, Cerit F. Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. IJEG. 2020;5:49–59.
MLA Konak, Haluk et al. “Interpreting Deformation Results of Geodetic Network Points Using the Strain Models Based on Different Estimation Methods”. International Journal of Engineering and Geosciences, vol. 5, no. 1, 2020, pp. 49-59, doi:10.26833/ijeg.581584.
Vancouver Konak H, Küreç Nehbit P, Karaöz A, Cerit F. Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. IJEG. 2020;5(1):49-5.