Research Article
BibTex RIS Cite

Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications

Year 2023, Volume: 8 Issue: 1, 76 - 82, 15.02.2023
https://doi.org/10.26833/ijeg.1053213

Abstract

In this study, a high-gain and dual-polarized Quad Ridged Horn Antenna (QRHA) is proposed and designed to be used in Obstacle Penetrating Imaging Radar (OPIR) applications. The quad ridged design is developed and then optimized by using the antenna design simulator software; CST Microwave Studio. The antenna parameters including the center frequency, frequency bandwidth and the antenna radiation pattern beam width are considered based on the requirements of OPIR applications. The final design is obtained for the center frequency of 2.785 GHz with a -10 dB bandwidth of at least 2.5 GHz. The final designed QRHA is able to provide a gain of 12.4 dB with a beam width of 36ᵒ at the center frequency of 2.785 GHz.                               

References

  • Ozdemir, C., & Ling, H. (1997). Joint time-frequency interpretation of scattering phenomenology in dielectric-coated wires. IEEE Transactions on Antennas and Propagation, 45, 1259- 1264.
  • Demirci, S., Ozdemir, C., Akdagli, A., & Yigit, E. (2008). Clutter reduction in synthetic aperture radar images with statistical modelling: An application to MSTAR data. Microwave and Optical Technology Letters, 50, 1514-1520.
  • Ahmed, S. S., Schiessl, A., Gumbmann, F., Tiebout, M., Methfessel, S. (2012). Advanced microwave imaging. IEEE Microwave Magazine, 13, 26-43.
  • Sheen, D. M., McMakin, D. L., & Hall, T. E. (2010). Near-field threedimensional radar imaging techniques and applications. Applied Optics, 49, E83–E93.
  • Yarovoy, A. G., Savelyev, T. G., Aubry, P. J., Lys, P. E., & Ligthart, L. P. (2007). UWB array-based sensor for near-field imaging. IEEE Trans on Microwave Theory and Techniques, 55, 1288–1295.
  • Baranoski, E. J. (2008). Through-wall imaging: historical perspective and future directions. Journal of the Franklin Institute, 345, 556–569.
  • Wang, G. Y., & Amin, M. G. (2006). Imaging through unknown walls using different standoff distances. IEEE Transactions on Signal Processing, 54, 4015–4025.
  • Zhu, F., Gao, S., Ho, A. T. S., Brown, T. W. C., Li, J. Z., & Xu, J. D. (2011). Low-profile directional ultra-wideband antenna for see-through-wall imaging applications. Progress In Electromagnetics Research, 121, 121-139.
  • Dou, Q., Wei, L., Magee, D. R., & Cohn, A. G. (2017). Real-Time Hyperbola Recognition and Fitting in GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 55, 51-62
  • Gu, K., Wang, G., & Li, J. (2004). Migration based SAR imaging for ground penetrating radar systems. IEE Proceedings - Radar, Sonar and Navigation, 151, 317-325.
  • Soldovieri, F., Lopera, O., & Lambot, S. (2011). Combination of Advanced Inversion Techniques for an Accurate Target Localization via GPR for Demining Applications. IEEE Transactions on Geoscience and Remote Sensing, 49, 451-461.
  • Özdemir, C. (2021). Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, Second Edition. Wiley. ISBN: 978-1119521334
  • Ghosh, C., Sarkar, T. K. (2009). Design of a wide-angle biconical antenna for wideband communications. Progress in Electromagnetics Research B, 16, 229-245.
  • Tang, X., Li, R., Pei, J., & Long, Y. (2014). An Ultra Wideband Printed Helical Antenna with Low Profile. Progress in Electromagnetics Research Symposium (PIERS), 2014, 1499–1502.
  • Islam, M. A., Istiak, S. M. S., Rahman, I., Tonmoy, S. A. U., & Ali, S. M. R. (2017). Design and Performance Analysis of a Log Periodic Dipole Antenna with a Frequency Range of 1350 to 2690 MHz. Journal of Microwave Engineering and Technologies, 4, 6–12.
  • Kubacki, R., Czyewski, M., & Laskowski, D. (2020). Enlarged Frequency Bandwidth of Truncated Log-Periodic Dipole Array Antenna. Electronics, 9, 1300.
  • Mehdipour, A., Aghdam, K. M., & Faraji-Dana, R. (2007). Completed dispersion analysis of Vivaldi antenna for ultra-wideband applications. Progress In Electromagnetics Research, 77, 85–96.
  • Bruns, C., Leuchtman, P., & Vahldieck, R. (2003). Analysis and simulation of a 1–18 GHz broadband double-ridged horn antenna. IEEE Transactions on Electromagnetic Compatibility, 45, 55–60.
  • Toktas, A. (2016). Log-periodic dipole array-based MIMO antenna for the mobile handsets. Journal of Electromagnetic Waves and Applications, 30, 351-365.
  • Toktas, A. (2016). Scalable notch antenna system for multiport applications. International Journal of Antennas and Propagation, 2016, 1-8.
  • Toktas, A. (2017). G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas & Propagation, 11, 718-725.
  • Yılmaz, B., & Özdemir, C. (2017). Design and Prototype of a Compact, Ultra Wide Band Double Ridged Horn Antenna for Behind Obstacle Radar Applications. Turkish Journal of Engineering, 1, 76-81.
  • Novak, L. M, Owirka, G. J., & Netishen, C. M. (1993). Performance of a high resolution, polarimetric SAR automatic target recognition system. Lincoln Laboratory Journal, 6, 11-24.
  • Van Zyl, J. J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27, 36- 45.
  • CST. (2012). CST Microwave Studio Advanced Topics. Technical report, CST-Computer Simulation Technology.
Year 2023, Volume: 8 Issue: 1, 76 - 82, 15.02.2023
https://doi.org/10.26833/ijeg.1053213

Abstract

References

  • Ozdemir, C., & Ling, H. (1997). Joint time-frequency interpretation of scattering phenomenology in dielectric-coated wires. IEEE Transactions on Antennas and Propagation, 45, 1259- 1264.
  • Demirci, S., Ozdemir, C., Akdagli, A., & Yigit, E. (2008). Clutter reduction in synthetic aperture radar images with statistical modelling: An application to MSTAR data. Microwave and Optical Technology Letters, 50, 1514-1520.
  • Ahmed, S. S., Schiessl, A., Gumbmann, F., Tiebout, M., Methfessel, S. (2012). Advanced microwave imaging. IEEE Microwave Magazine, 13, 26-43.
  • Sheen, D. M., McMakin, D. L., & Hall, T. E. (2010). Near-field threedimensional radar imaging techniques and applications. Applied Optics, 49, E83–E93.
  • Yarovoy, A. G., Savelyev, T. G., Aubry, P. J., Lys, P. E., & Ligthart, L. P. (2007). UWB array-based sensor for near-field imaging. IEEE Trans on Microwave Theory and Techniques, 55, 1288–1295.
  • Baranoski, E. J. (2008). Through-wall imaging: historical perspective and future directions. Journal of the Franklin Institute, 345, 556–569.
  • Wang, G. Y., & Amin, M. G. (2006). Imaging through unknown walls using different standoff distances. IEEE Transactions on Signal Processing, 54, 4015–4025.
  • Zhu, F., Gao, S., Ho, A. T. S., Brown, T. W. C., Li, J. Z., & Xu, J. D. (2011). Low-profile directional ultra-wideband antenna for see-through-wall imaging applications. Progress In Electromagnetics Research, 121, 121-139.
  • Dou, Q., Wei, L., Magee, D. R., & Cohn, A. G. (2017). Real-Time Hyperbola Recognition and Fitting in GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 55, 51-62
  • Gu, K., Wang, G., & Li, J. (2004). Migration based SAR imaging for ground penetrating radar systems. IEE Proceedings - Radar, Sonar and Navigation, 151, 317-325.
  • Soldovieri, F., Lopera, O., & Lambot, S. (2011). Combination of Advanced Inversion Techniques for an Accurate Target Localization via GPR for Demining Applications. IEEE Transactions on Geoscience and Remote Sensing, 49, 451-461.
  • Özdemir, C. (2021). Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, Second Edition. Wiley. ISBN: 978-1119521334
  • Ghosh, C., Sarkar, T. K. (2009). Design of a wide-angle biconical antenna for wideband communications. Progress in Electromagnetics Research B, 16, 229-245.
  • Tang, X., Li, R., Pei, J., & Long, Y. (2014). An Ultra Wideband Printed Helical Antenna with Low Profile. Progress in Electromagnetics Research Symposium (PIERS), 2014, 1499–1502.
  • Islam, M. A., Istiak, S. M. S., Rahman, I., Tonmoy, S. A. U., & Ali, S. M. R. (2017). Design and Performance Analysis of a Log Periodic Dipole Antenna with a Frequency Range of 1350 to 2690 MHz. Journal of Microwave Engineering and Technologies, 4, 6–12.
  • Kubacki, R., Czyewski, M., & Laskowski, D. (2020). Enlarged Frequency Bandwidth of Truncated Log-Periodic Dipole Array Antenna. Electronics, 9, 1300.
  • Mehdipour, A., Aghdam, K. M., & Faraji-Dana, R. (2007). Completed dispersion analysis of Vivaldi antenna for ultra-wideband applications. Progress In Electromagnetics Research, 77, 85–96.
  • Bruns, C., Leuchtman, P., & Vahldieck, R. (2003). Analysis and simulation of a 1–18 GHz broadband double-ridged horn antenna. IEEE Transactions on Electromagnetic Compatibility, 45, 55–60.
  • Toktas, A. (2016). Log-periodic dipole array-based MIMO antenna for the mobile handsets. Journal of Electromagnetic Waves and Applications, 30, 351-365.
  • Toktas, A. (2016). Scalable notch antenna system for multiport applications. International Journal of Antennas and Propagation, 2016, 1-8.
  • Toktas, A. (2017). G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas & Propagation, 11, 718-725.
  • Yılmaz, B., & Özdemir, C. (2017). Design and Prototype of a Compact, Ultra Wide Band Double Ridged Horn Antenna for Behind Obstacle Radar Applications. Turkish Journal of Engineering, 1, 76-81.
  • Novak, L. M, Owirka, G. J., & Netishen, C. M. (1993). Performance of a high resolution, polarimetric SAR automatic target recognition system. Lincoln Laboratory Journal, 6, 11-24.
  • Van Zyl, J. J. (1989). Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 27, 36- 45.
  • CST. (2012). CST Microwave Studio Advanced Topics. Technical report, CST-Computer Simulation Technology.
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Betül Yılmaz 0000-0001-7404-8312

Publication Date February 15, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

APA Yılmaz, B. (2023). Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications. International Journal of Engineering and Geosciences, 8(1), 76-82. https://doi.org/10.26833/ijeg.1053213
AMA Yılmaz B. Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications. IJEG. February 2023;8(1):76-82. doi:10.26833/ijeg.1053213
Chicago Yılmaz, Betül. “Design of Ultra-Wide Band Dual-Polarized Quad Ridged Horn Antenna for Obstacle Penetrating Radar Imaging Applications”. International Journal of Engineering and Geosciences 8, no. 1 (February 2023): 76-82. https://doi.org/10.26833/ijeg.1053213.
EndNote Yılmaz B (February 1, 2023) Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications. International Journal of Engineering and Geosciences 8 1 76–82.
IEEE B. Yılmaz, “Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications”, IJEG, vol. 8, no. 1, pp. 76–82, 2023, doi: 10.26833/ijeg.1053213.
ISNAD Yılmaz, Betül. “Design of Ultra-Wide Band Dual-Polarized Quad Ridged Horn Antenna for Obstacle Penetrating Radar Imaging Applications”. International Journal of Engineering and Geosciences 8/1 (February 2023), 76-82. https://doi.org/10.26833/ijeg.1053213.
JAMA Yılmaz B. Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications. IJEG. 2023;8:76–82.
MLA Yılmaz, Betül. “Design of Ultra-Wide Band Dual-Polarized Quad Ridged Horn Antenna for Obstacle Penetrating Radar Imaging Applications”. International Journal of Engineering and Geosciences, vol. 8, no. 1, 2023, pp. 76-82, doi:10.26833/ijeg.1053213.
Vancouver Yılmaz B. Design of ultra-wide band dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications. IJEG. 2023;8(1):76-82.