Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 2, 146 - 153, 05.07.2023
https://doi.org/10.26833/ijeg.1086861

Abstract

References

  • Bai, X., Zhang, H., & Zhou, J. (2014). VHR object detection based on structural feature extraction and query expansion. IEEE Transactions on Geoscience and Remote Sensing, 52, 6508–6520.
  • Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., Mitchard, E.T.A., Reiche, J., Ryan, C.M., & Waske, B. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring, Remote Sensing, 8(1), 70.
  • Göksel, Ç. & Bozkaya Karip, G. (2017). İğneada Koruma Alanının Arazi Örtüsü/Arazi Kullanımının Zamana Bağlı Değişiminin Markov Zincirleri İle Modellenmesi. Geomatik, 2 (2), 94-105.
  • Durkut, Z., Algancı, U. & Sertel, E. (2020). Uydu Görüntüsü İşleme ve Sıkıştırma Süreçlerinin WEB Tabanlı Harita Servisi Yayın Performansına Etkilerinin Araştırılması. Geomatik, 5 (3), 186-192.
  • Zabcı, C. (2021). Çok bantlı Landsat 8-OLI ve Sentinel-2A MSI uydu görüntülerinin karşılaştırmalı jeoloji uygulaması: Örnek çalışma alanı olarak Doğu Anadolu Fayı boyunca Palu – Hazar Gölü bölgesi (Elazığ, Türkiye). Geomatik, 6 (3), 238-246.
  • Karagianni, A. (2022). Road extraction through digital processing and visual interpretation of satellite images. International Journal of Engineering and Geosciences, 7 (3), 264-271.
  • Guha, S. & Govil, H. (2022). Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. International Journal of Engineering and Geosciences, 7 (1), 9-16.
  • Paul, S. (2022). Change detection and future change prediction in Habra I and II block using remote sensing and GIS – A case study. International Journal of Engineering and Geosciences, 7 (2), 191-207.
  • Saroğlu, E. (2004). Farklı çözünürlükteki uydu görüntülerinin geometrik dönüşümü ve dönüşüm sonucunda elde edilen görüntülerin dış doğruluğunun araştırılması (Master of Science dissertation, Fen Bilimleri Enstitüsü).
  • Sertel, E., Kutoglu, S. H., & Kaya, S. (2007). Geometric correction accuracy of different satellite sensor images: Application of figure condition. International Journal of Remote Sensing, 28, 4685–4692.
  • Kartal, H., Alganci, U., & Sertel, E. (2018). Automated orthorectification of VHR satellite images by SIFT-based RPC refinement. ISPRS International Journal of Geo-Information, 7(6), 229.
  • Toutin, T. (2003). Geometric correction of remotely sensed images. In Remote Sensing of Forest Environments (pp. 143-180). Springer, Boston, MA.
  • Toutin, T. (2004). Geometric processing of remote sensing images: Models, algorithms and methods. International Journal of Remote Sensing, 25, 1893–1924.
  • Alganci, U., Besol, B., & Sertel, E. (2018). Accuracy assessment of different digital surface models. ISPRS International Journal of Geo-Information, 7(3), 114.
  • Zhang, Ying, Zhaohui Chi, Fengming Hui, Teng Li, Xuying Liu, Baogang Zhang, Xiao Cheng, and Zhuoqi Chen. (2021). Accuracy Evaluation on Geolocation of the Chinese First Polar Microsatellite (Ice Pathfinder) Imagery. Remote Sensing, 13(21), 4278.
  • Samadzadegan, F., Milanlak, A., & Majdabadi, M. (2006). Geometrical Correction of Satellite Images by Generic Models. In Proceedings of the ISPRS Commission VII Symposium 'Remote Sensing: From Pixels to Processes', Enschede, Netherlands, (pp. 1-5)
  • Ye, J., Lin, X., & Xu, T. (2017). Mathematical modeling and accuracy testing of worldview-2 level-1B stereo pairs without ground control points. Remote Sensing, 9(7), 737.
  • Son, J.-H., Yoon, W., Kim, T., & Rhee, S. (2021). Iterative Precision Geometric Correction for High-Resolution Satellite Images. Korean Journal of Remote Sensing, 37(3), 431–447.
  • Mezouar, O., Meskine, F., Boukerch, I. & Taleb N (2021). A Hybrid particle swarm optimization of the rational function model for satellite strip images ortho-rectification. International Journal of Remote Sensing, 42(21), 8056-8076.
  • Misra, I., Rohil, M. K., Moorthi, S. M. & Dhar, D. (2022). FIRM: Framework for Image Registration Using Multistage Feature Detection and Mode-Guided Motion Smoothness Keypoint Optimization. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12.
  • Wang, T., Li, X., Zhang, G., Lin, M., Deng, M., Cui, H., Jiang, B., Wang, Y., Zhu, Y., Wang, H. & Yuan, X. (2022). Large-Scale Orthorectification of GF-3 SAR Images Without Ground Control Points for China’s Land Area. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17, 5221617
  • Shaker, A., Shi, W., & Barakat, H. (2005). Assessment of the rectification accuracy of IKONOS imagery based on two‐dimensional models, International Journal of Remote Sensing, 26(4), 719-731
  • PCI Geomatics. (2012). Geomatica Help. PCI Geomatics: Markham, ON, Canada.
  • Tao, V., & Hu, Y. (2001). A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogrammetric Engineering & Remote Sensing, 67(12), 1347 – 1357.
  • Grodecki, J. (2001). Ikonos Stereo Feature Extraction-RPC Approach. Annual Conference of the ASPRS 2001, St. Louis, 23-27 April 2001
  • Hu, Y., Tao, V., Croitoru, A. (2004). Understanding the rational function model: Methods and applications. International Archives of Photogrammetry and Remote Sensing 20, 119–124.
  • Toutin, T. (1995). Generating DEM from stereo-images with a photogrammetric approach: examples with VIR and SAR data. EARSeL Advances in Remote Sensing, 4, 110–117.

A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images

Year 2023, Volume: 8 Issue: 2, 146 - 153, 05.07.2023
https://doi.org/10.26833/ijeg.1086861

Abstract

Satellite images have been widely used in the production of geospatial information such as land use and land cover mapping and the generation of several thematic layers via image processing techniques. The systematic sensor and platform-induced geometry errors influence images acquired by sensors onboard various satellite platforms. Thus, geometric correction of satellite images is essential for image pre-processing to extract accurate and reliable locational information. Geometric correction of satellite images obtained from two different satellites, Pleiades 1A (PHR) and SPOT-6, was performed within the scope of this study using empirical models and a physical model. The 2D polynomial model, 3D rational function model with calculated RPCs from GCPs, 3D rational function model with RPCs from satellite, RPC refinement model using GCPs, and Toutin's physical model were used. Several experiments were carried out to investigate the effects of various parameters on the performance of the geometric correction procedure, such as GCP reference data source, GCP number and distribution, DEM source, spatial resolution, and model. Our results showed that lower RMSE values could be achieved with the model that uses RPC from data providers for PHR and SPOT, followed by the RPC refinement method for PHR and Toutin method for SPOT. In general, GCPs from the HGM data source and ALOS DEM combination provided better results. Lastly, lower RMSE values, thus better locational accuracy values, were observed with the PHR image except for a single test.

References

  • Bai, X., Zhang, H., & Zhou, J. (2014). VHR object detection based on structural feature extraction and query expansion. IEEE Transactions on Geoscience and Remote Sensing, 52, 6508–6520.
  • Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., Mitchard, E.T.A., Reiche, J., Ryan, C.M., & Waske, B. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring, Remote Sensing, 8(1), 70.
  • Göksel, Ç. & Bozkaya Karip, G. (2017). İğneada Koruma Alanının Arazi Örtüsü/Arazi Kullanımının Zamana Bağlı Değişiminin Markov Zincirleri İle Modellenmesi. Geomatik, 2 (2), 94-105.
  • Durkut, Z., Algancı, U. & Sertel, E. (2020). Uydu Görüntüsü İşleme ve Sıkıştırma Süreçlerinin WEB Tabanlı Harita Servisi Yayın Performansına Etkilerinin Araştırılması. Geomatik, 5 (3), 186-192.
  • Zabcı, C. (2021). Çok bantlı Landsat 8-OLI ve Sentinel-2A MSI uydu görüntülerinin karşılaştırmalı jeoloji uygulaması: Örnek çalışma alanı olarak Doğu Anadolu Fayı boyunca Palu – Hazar Gölü bölgesi (Elazığ, Türkiye). Geomatik, 6 (3), 238-246.
  • Karagianni, A. (2022). Road extraction through digital processing and visual interpretation of satellite images. International Journal of Engineering and Geosciences, 7 (3), 264-271.
  • Guha, S. & Govil, H. (2022). Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. International Journal of Engineering and Geosciences, 7 (1), 9-16.
  • Paul, S. (2022). Change detection and future change prediction in Habra I and II block using remote sensing and GIS – A case study. International Journal of Engineering and Geosciences, 7 (2), 191-207.
  • Saroğlu, E. (2004). Farklı çözünürlükteki uydu görüntülerinin geometrik dönüşümü ve dönüşüm sonucunda elde edilen görüntülerin dış doğruluğunun araştırılması (Master of Science dissertation, Fen Bilimleri Enstitüsü).
  • Sertel, E., Kutoglu, S. H., & Kaya, S. (2007). Geometric correction accuracy of different satellite sensor images: Application of figure condition. International Journal of Remote Sensing, 28, 4685–4692.
  • Kartal, H., Alganci, U., & Sertel, E. (2018). Automated orthorectification of VHR satellite images by SIFT-based RPC refinement. ISPRS International Journal of Geo-Information, 7(6), 229.
  • Toutin, T. (2003). Geometric correction of remotely sensed images. In Remote Sensing of Forest Environments (pp. 143-180). Springer, Boston, MA.
  • Toutin, T. (2004). Geometric processing of remote sensing images: Models, algorithms and methods. International Journal of Remote Sensing, 25, 1893–1924.
  • Alganci, U., Besol, B., & Sertel, E. (2018). Accuracy assessment of different digital surface models. ISPRS International Journal of Geo-Information, 7(3), 114.
  • Zhang, Ying, Zhaohui Chi, Fengming Hui, Teng Li, Xuying Liu, Baogang Zhang, Xiao Cheng, and Zhuoqi Chen. (2021). Accuracy Evaluation on Geolocation of the Chinese First Polar Microsatellite (Ice Pathfinder) Imagery. Remote Sensing, 13(21), 4278.
  • Samadzadegan, F., Milanlak, A., & Majdabadi, M. (2006). Geometrical Correction of Satellite Images by Generic Models. In Proceedings of the ISPRS Commission VII Symposium 'Remote Sensing: From Pixels to Processes', Enschede, Netherlands, (pp. 1-5)
  • Ye, J., Lin, X., & Xu, T. (2017). Mathematical modeling and accuracy testing of worldview-2 level-1B stereo pairs without ground control points. Remote Sensing, 9(7), 737.
  • Son, J.-H., Yoon, W., Kim, T., & Rhee, S. (2021). Iterative Precision Geometric Correction for High-Resolution Satellite Images. Korean Journal of Remote Sensing, 37(3), 431–447.
  • Mezouar, O., Meskine, F., Boukerch, I. & Taleb N (2021). A Hybrid particle swarm optimization of the rational function model for satellite strip images ortho-rectification. International Journal of Remote Sensing, 42(21), 8056-8076.
  • Misra, I., Rohil, M. K., Moorthi, S. M. & Dhar, D. (2022). FIRM: Framework for Image Registration Using Multistage Feature Detection and Mode-Guided Motion Smoothness Keypoint Optimization. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12.
  • Wang, T., Li, X., Zhang, G., Lin, M., Deng, M., Cui, H., Jiang, B., Wang, Y., Zhu, Y., Wang, H. & Yuan, X. (2022). Large-Scale Orthorectification of GF-3 SAR Images Without Ground Control Points for China’s Land Area. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17, 5221617
  • Shaker, A., Shi, W., & Barakat, H. (2005). Assessment of the rectification accuracy of IKONOS imagery based on two‐dimensional models, International Journal of Remote Sensing, 26(4), 719-731
  • PCI Geomatics. (2012). Geomatica Help. PCI Geomatics: Markham, ON, Canada.
  • Tao, V., & Hu, Y. (2001). A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogrammetric Engineering & Remote Sensing, 67(12), 1347 – 1357.
  • Grodecki, J. (2001). Ikonos Stereo Feature Extraction-RPC Approach. Annual Conference of the ASPRS 2001, St. Louis, 23-27 April 2001
  • Hu, Y., Tao, V., Croitoru, A. (2004). Understanding the rational function model: Methods and applications. International Archives of Photogrammetry and Remote Sensing 20, 119–124.
  • Toutin, T. (1995). Generating DEM from stereo-images with a photogrammetric approach: examples with VIR and SAR data. EARSeL Advances in Remote Sensing, 4, 110–117.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Buğrahan Özcihan 0000-0002-4540-3140

Levent Doğukan Özlü 0000-0001-7121-8101

Mümin İlker Karakap 0000-0002-7128-2100

Halime Sürmeli

Ugur Algancı 0000-0002-5693-3614

Elif Sertel 0000-0003-4854-494X

Publication Date July 5, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Özcihan, B., Özlü, L. D., Karakap, M. İ., Sürmeli, H., et al. (2023). A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images. International Journal of Engineering and Geosciences, 8(2), 146-153. https://doi.org/10.26833/ijeg.1086861
AMA Özcihan B, Özlü LD, Karakap Mİ, Sürmeli H, Algancı U, Sertel E. A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images. IJEG. July 2023;8(2):146-153. doi:10.26833/ijeg.1086861
Chicago Özcihan, Buğrahan, Levent Doğukan Özlü, Mümin İlker Karakap, Halime Sürmeli, Ugur Algancı, and Elif Sertel. “A Comprehensive Analysis of Different Geometric Correction Methods for the Pleiades -1A and Spot-6 Satellite Images”. International Journal of Engineering and Geosciences 8, no. 2 (July 2023): 146-53. https://doi.org/10.26833/ijeg.1086861.
EndNote Özcihan B, Özlü LD, Karakap Mİ, Sürmeli H, Algancı U, Sertel E (July 1, 2023) A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images. International Journal of Engineering and Geosciences 8 2 146–153.
IEEE B. Özcihan, L. D. Özlü, M. İ. Karakap, H. Sürmeli, U. Algancı, and E. Sertel, “A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images”, IJEG, vol. 8, no. 2, pp. 146–153, 2023, doi: 10.26833/ijeg.1086861.
ISNAD Özcihan, Buğrahan et al. “A Comprehensive Analysis of Different Geometric Correction Methods for the Pleiades -1A and Spot-6 Satellite Images”. International Journal of Engineering and Geosciences 8/2 (July 2023), 146-153. https://doi.org/10.26833/ijeg.1086861.
JAMA Özcihan B, Özlü LD, Karakap Mİ, Sürmeli H, Algancı U, Sertel E. A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images. IJEG. 2023;8:146–153.
MLA Özcihan, Buğrahan et al. “A Comprehensive Analysis of Different Geometric Correction Methods for the Pleiades -1A and Spot-6 Satellite Images”. International Journal of Engineering and Geosciences, vol. 8, no. 2, 2023, pp. 146-53, doi:10.26833/ijeg.1086861.
Vancouver Özcihan B, Özlü LD, Karakap Mİ, Sürmeli H, Algancı U, Sertel E. A comprehensive analysis of different geometric correction methods for the Pleiades -1A and Spot-6 satellite images. IJEG. 2023;8(2):146-53.