Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 2, 165 - 172, 05.07.2023
https://doi.org/10.26833/ijeg.1110560

Abstract

References

  • Usul, N. & Turan, B. (2006). Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems. Natural Hazards, 39, 213-229.
  • Yuksek, O., Kankal, M. & Ucuncu, O. (2012). Assessment of big floods in the Eastern Black Sea Basin of Turkey. Environmental Monitoring and Assessment, 185, 797–814.
  • Anilan, T. & Yuksek, O. (2017). Perception of flood risk and mitigation: survey results from the Eastern Black Sea Basin, Turkey. Natural Hazards Review, 18(2), 05016006.
  • Lucà, F. & Robustelli, G. (2020). Comparison of logistic regression and neural network models in assessing geomorphic control on alluvial fan depositional processes (Calabria, southern Italy). Environmental Earth Sciences, 79, 39.
  • Hojati, M. & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41-52.
  • Altunel, A. O. (2018). Suitability of open-access elevation models for micro-scale watershed planning. Environmental Monitoring and Assessment, 190(9), 512.
  • Niebur, C. S., Arvidson, R. E., Guinness, E. A., & Galford, G. L. (2003). Lower Missouri River floodplain at arrow rock before and after the great floods of 1993. At the confluence: rivers, floods and water quality in the St. Louis Region, 115-134.
  • Kundzewicz, Z. W., Pińskwar, I., & Brakenridge, G. R. (2013). Large floods in Europe, 1985–2009. Hydrological Sciences Journal, 58(1), 1-7.
  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514-517.
  • Dutta, D., & Herath, S. (2004). Trend of floods in Asia and flood risk management with integrated river basin approach. In Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Singapore, 1, 55-63.
  • Beven, K. J. & Kirkby, M. J. (1979). A physically based variable contributing area model of basin hydrology. Hydrological Science Bulletin, 24, 43-69.
  • Buchanan, B. P., Fleming, M., Schneider, R. L., Richards B. K., Archibald, J., Qiu, Z. & Walter, M. T. (2014). Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrology and Earth System Sciences, 18, 3279-3299.
  • Ballerine, C. (2017). Topographic wetness index urban flooding awareness act action support, Will & DuPage Counties, Illinois. Illinois State Water Survey. Available through https://www.ideals.illinois.edu/items/104004 last accessed on 07/07/2022.
  • Qin, C. Z., Zhu, A. X., Pei, T., Li, B. L., Scholten, T., Behrens, T., & Zhou, C. H. (2011). An approach to computing topographic wetness index based on maximum downslope gradient. Precision agriculture, 12(1), 32-43.
  • ALOS-PALSAR. (2022). Alaska Satellite Facility (ASF) Data Search-Vertex. Available through https://search.asf.alaska.edu/#/?dataset=ALOS, last accessed on 21/04/2022.
  • AW3D30. (2022). ALOS Global Digital Surface Model “ALOS World 3D – 30m” (AW3D30). Available through https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm, last accessed on 21/04/2022.
  • TanDEM-X. (2022). TanDEM-X Digital Elevation Model (DEM)-Global 90m. Available through https://download.geoservice.dlr.de/TDM90/, last accessed on 21/04/2022.
  • Yan, S., Guo, H., Liu, G. & Ruan, Z. (2013). Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sensing Letters, 4(5), 494-503.
  • Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D. & Roth, A. (2018). Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 171-182.
  • Santillan, J. R., Makinano-Santillan, M. & Makinano, R. M. (2016). Vertical accuracy assessment of ALOS World 3D-30M Digital Elevation Model over northeastern Mindanao, Philippines. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5374-5377).
  • Caglar, B., Becek, K., Mekik, C. & Ozendi, M. (2018). On the vertical accuracy of the ALOS world 3D-30m digital elevation model. Remote Sensing Letters, 9(6), 607-615.
  • De Oliveira A. F. C. & De FáTima R. D. (2012). Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. International Journal of Remote Sensing, 33(4), 1058-1077.
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89.
  • Ghosh, S. & Kundu, S. (2022). Morphometric Characterization and Erosion Assessment of Gullies in the Lateritic Badlands of Eastern India using ALOS AW3D30 DEM and Topographic Indices. Geocarto International, 1-34 https://doi.org/10.1080/10106049.2022.2032390
  • Pandey, P., Manickam, S., Bhattacharya, A., Ramanathan, A. L., Singh, G. & Venkataraman, G. (2017). Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain. Geocarto International, 32(4), 442-454.
  • Akar, A. (2017). Evaluation of accuracy of dems obtained from uav-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110-117.
  • Kilicoglu, A., Direnc, A., Yildiz, H., Bolme, M., Aktug, B., Simav, M. & Lenk, O. (2011). Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia geophysica et geodaetica, 55(4), 557-578.
  • ALOS-PALSAR. (2022). ALOS PALSAR – Radiometric Terrain Correction. Available through https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/, last accessed on 25/04/2022.
  • Yilmaz, A. & Erdogan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.
  • Lecordix, F., Gallic, J. L., Gondol, L., & Braun, A. (2007, August). Development of a new generalization flowline for topographic maps. In 10th ICA workshop on Generalisation and Multiple Representation (pp. 2-3).
  • Oka, S., Garg, A. & Varghese, K. (2012). Vectorization of contour lines from scanned topographic map. Automation in Construction, 22, 192-2020.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A. & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9(1), 39-54.
  • Aksoy, H., Kirca, V. S. O., Burgan, H. I. & Kellecioglu, D. (2016). Hydrological and hydraulic models for determination of flood-prone and flood inundation areas. Proceedings of the International Association of Hydrological Sciences, 373, 137-141.
  • Werbrouck, I., Antrop, M., Van Eetvelde, V., Stal, C., De Maeyer, P., Bats, M., ... & Zwertvaegher, A. (2011). Digital Elevation Model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium). Expert Systems with Applications, 38(7), 8178-8185.
  • Bühler, Y., Marty, M. & Ginzler, C. (2012). High resolution DEM generation in high‐alpine terrain using airborne remote sensing techniques. Transactions in GIS, 16(5), 635-647.
  • Tepeköylü, S. (2016). Mobil Lidar Uygulamaları, Veri İşleme Yazılımları ve Modelleri. Geomatik, 1(1), 1-7.
  • San, B. T. & Suzen, M. L. (2005). Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. International Journal of Remote Sensing, 26(22), 5013-5027.
  • Uysal, M., Toprak, A. S. & Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543.
  • Li, J. & Wong, D. W. (2010). Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems, 34(3), 251-261.
  • Walker, J. P. & Willgoose, G. R. (1999). On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35(7), 2259-2268.
  • Saksena, S., & Merwade, V. (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrology, 530, 180-194.
  • Jeon, J. H., Ham, J. H., Chun, G. Y. & Kim, S. J. (2002). Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling. Magazine of the Korean Society of Agricultural Engineers, 44(7), 25-35.
  • Hancock, G. R. (2005). The use of digital elevation models in the identification and characterization of catchments over different grid scales. Hydrological Processes: An International Journal, 19(9), 1727-1749.
  • Mohanty, M. P., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Bhatt, C. M., ... & Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology, 590, 125523.
  • Dixon, B & Earls, J. (2009). Resample or Not?! Effects of resolution of DEMs in watershed modeling. Hydrological Processes: An International Journal, 23(12), 1714-1724.
  • Sorensen, R. & Seibert, J. (2007). Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, 347(1-2), 79-89.

The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021

Year 2023, Volume: 8 Issue: 2, 165 - 172, 05.07.2023
https://doi.org/10.26833/ijeg.1110560

Abstract

Topographic Wetness Index, also known as the compound topographic index, (TWI) is a topographic indicator that calculates the potential of where water is likely to accumulate during excessive precipitation cycles resulting from abrupt atmospheric anomalies. High index values represent serious potential of water accumulation due to low slope, and the opposite for high slope. As expected from the term, slope, Digital Elevation Model (DEM) datasets play an important role in the calculation of TWI. DEMs are produced utilizing tachometry, GPS benchmarking, UAV, aerial or satellite image capture and LIDAR capabilities. However, no matter how it is generated, a DEM is as good as the actual ground sampling algorithm, on which the final resolution is based. Using six different DEM resolutions coming from three global and one national source presented in three different setting coverages, upper feeder basin of Bozkurt sub-province, Kastamonu, was analyzed emphasizing the urbanized part of the sub-province, which was devastated during the August 11th, 2021 flood. Coarser resolution missed the overall precision while the finer resolution captured it nicely. On the flip side, finer resolution excessively fragmented the questioned area while the coarser resolution formed a unity coinciding with the destructed area recorded during the event.  

References

  • Usul, N. & Turan, B. (2006). Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems. Natural Hazards, 39, 213-229.
  • Yuksek, O., Kankal, M. & Ucuncu, O. (2012). Assessment of big floods in the Eastern Black Sea Basin of Turkey. Environmental Monitoring and Assessment, 185, 797–814.
  • Anilan, T. & Yuksek, O. (2017). Perception of flood risk and mitigation: survey results from the Eastern Black Sea Basin, Turkey. Natural Hazards Review, 18(2), 05016006.
  • Lucà, F. & Robustelli, G. (2020). Comparison of logistic regression and neural network models in assessing geomorphic control on alluvial fan depositional processes (Calabria, southern Italy). Environmental Earth Sciences, 79, 39.
  • Hojati, M. & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41-52.
  • Altunel, A. O. (2018). Suitability of open-access elevation models for micro-scale watershed planning. Environmental Monitoring and Assessment, 190(9), 512.
  • Niebur, C. S., Arvidson, R. E., Guinness, E. A., & Galford, G. L. (2003). Lower Missouri River floodplain at arrow rock before and after the great floods of 1993. At the confluence: rivers, floods and water quality in the St. Louis Region, 115-134.
  • Kundzewicz, Z. W., Pińskwar, I., & Brakenridge, G. R. (2013). Large floods in Europe, 1985–2009. Hydrological Sciences Journal, 58(1), 1-7.
  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514-517.
  • Dutta, D., & Herath, S. (2004). Trend of floods in Asia and flood risk management with integrated river basin approach. In Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Singapore, 1, 55-63.
  • Beven, K. J. & Kirkby, M. J. (1979). A physically based variable contributing area model of basin hydrology. Hydrological Science Bulletin, 24, 43-69.
  • Buchanan, B. P., Fleming, M., Schneider, R. L., Richards B. K., Archibald, J., Qiu, Z. & Walter, M. T. (2014). Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrology and Earth System Sciences, 18, 3279-3299.
  • Ballerine, C. (2017). Topographic wetness index urban flooding awareness act action support, Will & DuPage Counties, Illinois. Illinois State Water Survey. Available through https://www.ideals.illinois.edu/items/104004 last accessed on 07/07/2022.
  • Qin, C. Z., Zhu, A. X., Pei, T., Li, B. L., Scholten, T., Behrens, T., & Zhou, C. H. (2011). An approach to computing topographic wetness index based on maximum downslope gradient. Precision agriculture, 12(1), 32-43.
  • ALOS-PALSAR. (2022). Alaska Satellite Facility (ASF) Data Search-Vertex. Available through https://search.asf.alaska.edu/#/?dataset=ALOS, last accessed on 21/04/2022.
  • AW3D30. (2022). ALOS Global Digital Surface Model “ALOS World 3D – 30m” (AW3D30). Available through https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm, last accessed on 21/04/2022.
  • TanDEM-X. (2022). TanDEM-X Digital Elevation Model (DEM)-Global 90m. Available through https://download.geoservice.dlr.de/TDM90/, last accessed on 21/04/2022.
  • Yan, S., Guo, H., Liu, G. & Ruan, Z. (2013). Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sensing Letters, 4(5), 494-503.
  • Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D. & Roth, A. (2018). Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 171-182.
  • Santillan, J. R., Makinano-Santillan, M. & Makinano, R. M. (2016). Vertical accuracy assessment of ALOS World 3D-30M Digital Elevation Model over northeastern Mindanao, Philippines. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5374-5377).
  • Caglar, B., Becek, K., Mekik, C. & Ozendi, M. (2018). On the vertical accuracy of the ALOS world 3D-30m digital elevation model. Remote Sensing Letters, 9(6), 607-615.
  • De Oliveira A. F. C. & De FáTima R. D. (2012). Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. International Journal of Remote Sensing, 33(4), 1058-1077.
  • Senkal, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89.
  • Ghosh, S. & Kundu, S. (2022). Morphometric Characterization and Erosion Assessment of Gullies in the Lateritic Badlands of Eastern India using ALOS AW3D30 DEM and Topographic Indices. Geocarto International, 1-34 https://doi.org/10.1080/10106049.2022.2032390
  • Pandey, P., Manickam, S., Bhattacharya, A., Ramanathan, A. L., Singh, G. & Venkataraman, G. (2017). Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain. Geocarto International, 32(4), 442-454.
  • Akar, A. (2017). Evaluation of accuracy of dems obtained from uav-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110-117.
  • Kilicoglu, A., Direnc, A., Yildiz, H., Bolme, M., Aktug, B., Simav, M. & Lenk, O. (2011). Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia geophysica et geodaetica, 55(4), 557-578.
  • ALOS-PALSAR. (2022). ALOS PALSAR – Radiometric Terrain Correction. Available through https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/, last accessed on 25/04/2022.
  • Yilmaz, A. & Erdogan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084.
  • Lecordix, F., Gallic, J. L., Gondol, L., & Braun, A. (2007, August). Development of a new generalization flowline for topographic maps. In 10th ICA workshop on Generalisation and Multiple Representation (pp. 2-3).
  • Oka, S., Garg, A. & Varghese, K. (2012). Vectorization of contour lines from scanned topographic map. Automation in Construction, 22, 192-2020.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A. & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9(1), 39-54.
  • Aksoy, H., Kirca, V. S. O., Burgan, H. I. & Kellecioglu, D. (2016). Hydrological and hydraulic models for determination of flood-prone and flood inundation areas. Proceedings of the International Association of Hydrological Sciences, 373, 137-141.
  • Werbrouck, I., Antrop, M., Van Eetvelde, V., Stal, C., De Maeyer, P., Bats, M., ... & Zwertvaegher, A. (2011). Digital Elevation Model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium). Expert Systems with Applications, 38(7), 8178-8185.
  • Bühler, Y., Marty, M. & Ginzler, C. (2012). High resolution DEM generation in high‐alpine terrain using airborne remote sensing techniques. Transactions in GIS, 16(5), 635-647.
  • Tepeköylü, S. (2016). Mobil Lidar Uygulamaları, Veri İşleme Yazılımları ve Modelleri. Geomatik, 1(1), 1-7.
  • San, B. T. & Suzen, M. L. (2005). Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data. International Journal of Remote Sensing, 26(22), 5013-5027.
  • Uysal, M., Toprak, A. S. & Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543.
  • Li, J. & Wong, D. W. (2010). Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems, 34(3), 251-261.
  • Walker, J. P. & Willgoose, G. R. (1999). On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35(7), 2259-2268.
  • Saksena, S., & Merwade, V. (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrology, 530, 180-194.
  • Jeon, J. H., Ham, J. H., Chun, G. Y. & Kim, S. J. (2002). Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling. Magazine of the Korean Society of Agricultural Engineers, 44(7), 25-35.
  • Hancock, G. R. (2005). The use of digital elevation models in the identification and characterization of catchments over different grid scales. Hydrological Processes: An International Journal, 19(9), 1727-1749.
  • Mohanty, M. P., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Bhatt, C. M., ... & Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology, 590, 125523.
  • Dixon, B & Earls, J. (2009). Resample or Not?! Effects of resolution of DEMs in watershed modeling. Hydrological Processes: An International Journal, 23(12), 1714-1724.
  • Sorensen, R. & Seibert, J. (2007). Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, 347(1-2), 79-89.
There are 47 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Arif Oguz Altunel 0000-0003-2597-5587

Publication Date July 5, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172. https://doi.org/10.26833/ijeg.1110560
AMA Altunel AO. The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. IJEG. July 2023;8(2):165-172. doi:10.26833/ijeg.1110560
Chicago Altunel, Arif Oguz. “The Effect of DEM Resolution on Topographic Wetness Index Calculation and Visualization: An Insight to the Hidden Danger Unraveled in Bozkurt in August, 2021”. International Journal of Engineering and Geosciences 8, no. 2 (July 2023): 165-72. https://doi.org/10.26833/ijeg.1110560.
EndNote Altunel AO (July 1, 2023) The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences 8 2 165–172.
IEEE A. O. Altunel, “The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021”, IJEG, vol. 8, no. 2, pp. 165–172, 2023, doi: 10.26833/ijeg.1110560.
ISNAD Altunel, Arif Oguz. “The Effect of DEM Resolution on Topographic Wetness Index Calculation and Visualization: An Insight to the Hidden Danger Unraveled in Bozkurt in August, 2021”. International Journal of Engineering and Geosciences 8/2 (July 2023), 165-172. https://doi.org/10.26833/ijeg.1110560.
JAMA Altunel AO. The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. IJEG. 2023;8:165–172.
MLA Altunel, Arif Oguz. “The Effect of DEM Resolution on Topographic Wetness Index Calculation and Visualization: An Insight to the Hidden Danger Unraveled in Bozkurt in August, 2021”. International Journal of Engineering and Geosciences, vol. 8, no. 2, 2023, pp. 165-72, doi:10.26833/ijeg.1110560.
Vancouver Altunel AO. The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. IJEG. 2023;8(2):165-72.