Research Article
BibTex RIS Cite
Year 2023, Volume: 8 Issue: 3, 318 - 328, 15.10.2023
https://doi.org/10.26833/ijeg.1190998

Abstract

References

  • Foster, S., Chilton, J., Nijsten, G. J., & Richts, A. (2013). Groundwater—a global focus on the ‘local resource’. Current opinion in environmental sustainability, 5(6), 685-695.
  • Carmon, N., & Shamir, U. (2010). Water‐sensitive planning: integrating water considerations into urban and regional planning. Water and Environment Journal, 24(3), 181-191.
  • Yağmur, N., Tanık, A., Tuzcu, A., Musaoğlu, N., Erten, E., & Bilgilioglu, B. (2020). Oppurtunities provided by remote sensing data for watershed management: Example of konya closed basin. International Journal of Engineering and Geosciences, 5(3), 120-129.
  • Saaty, T.L. (1980) The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw: New York, NY, USA, ISBN 978-0070543713.
  • Sajil Kumar, P. J., Elango, L., & Schneider, M. (2022). GIS and AHP based groundwater potential zones delineation in Chennai River Basin (CRB), India. Sustainability, 14(3), 1830.
  • Uc Castillo, J. L., Martínez Cruz, D. A., Ramos Leal, J. A., Tuxpan Vargas, J., Rodríguez Tapia, S. A., & Marín Celestino, A. E. (2022). Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water, 14(13), 2138.
  • Maity, B., Mallick, S. K., Das, P., & Rudra, S. (2022). Comparative analysis of groundwater potentiality zone using fuzzy AHP, frequency ratio and Bayesian weights of evidence methods. Applied Water Science, 12(4), 63.
  • Raihan, A. T., Bauer, S., & Mukhopadhaya, S. (2022). An AHP based approach to forecast groundwater level at potential recharge zones of Uckermark District, Brandenburg, Germany. Scientific Reports, 12(1), 6365.
  • Polat, Z. A., Alkan, M., & Sürmeneli, H. G. (2017). Determining strategies for the cadastre 2034 vision using an AHP-Based SWOT analysis: A case study for the turkish cadastral and land administration system. Land use policy, 67, 151-166.
  • Arulbalaji, P. & Gurugnanam, B. (2016) An Integrated Study to Assess the Groundwater Potential Zone Using Geospatial Tool in Salem District, South India, Journal of Hydrogeology & Hydrologic Engineering, 5(2), 1-7
  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques-based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific reports, 9(1), 2082.
  • Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41-52.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9, 39-54.
  • Aghayev, A. (2018). Determining of different inundated land use in Salyan plain during 2010 the Kura River flood through GIS and remote sensing tools. International Journal of Engineering and Geosciences, 3(3), 80-86.
  • Lone, M. S., Nagaraju, D., Mahadavesamy, G., & Siddalingamurthy, S. (2013). Applications of GIS and remote sensing to delineate artificial recharge zones (DARZ) of groundwater in HD Kote taluk, Mysore district, Karnataka, India. International Journal of Remote Sensing and Geosciences, 2(3), 92-97.
  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2007) Remote Sensing and Image Interpretation, Wiley, Hoboken.
  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223-234.
  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8, 7059-7071.
  • Saaty, T. L. (1990) Decision making for leaders: the analytic hierarchy process for decisions in a complex world (RWS publications).
  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64, 373-381.
  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental geology, 58, 185-195.
  • Das, S. (2017). Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Modeling Earth Systems and Environment, 3(4), 1589-1599.
  • Khorrami, B., & Kamran, K. V. (2022). A fuzzy multi-criteria decision-making approach for the assessment of forest health applying hyper spectral imageries: A case study from Ramsar forest, North of Iran. International Journal of Engineering and Geosciences, 7(3), 214-220.
  • Kumar, M. G., Agarwal, A. K., & Bali, R. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 36, 323-334.
  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development--an approach. International Journal of Remote Sensing, 24(5), 993-1008.
  • Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International journal of Remote sensing, 17(10), 1867-1884.
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9, 39-54.
  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied water science, 7, 1377-1389.

Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process

Year 2023, Volume: 8 Issue: 3, 318 - 328, 15.10.2023
https://doi.org/10.26833/ijeg.1190998

Abstract

Detailed knowledge regarding the availability of potential groundwater sources is a prerequisite for the sustainable development of cities and towns in a planned manner. The present study is carried out to identify the potential groundwater sources for the growth of towns and cities around Virudhunagar district, India by integrated geospatial techniques and analytical hierarchy method. The groundwater potential zones are divided into four groups: low, medium, high, and very high. It is obtained that 1.71% and 51.86% fall under the low and medium zones, respectively. The area with high and very high groundwater potential accounts for 45.7% and 0.73% of the total area, respectively. Finally, potential areas identified for groundwater are validated with data on the potential yield of various wells, demonstrating a good correlation. The results of this research will help planners and decision-makers to better plan and develop future cities.

References

  • Foster, S., Chilton, J., Nijsten, G. J., & Richts, A. (2013). Groundwater—a global focus on the ‘local resource’. Current opinion in environmental sustainability, 5(6), 685-695.
  • Carmon, N., & Shamir, U. (2010). Water‐sensitive planning: integrating water considerations into urban and regional planning. Water and Environment Journal, 24(3), 181-191.
  • Yağmur, N., Tanık, A., Tuzcu, A., Musaoğlu, N., Erten, E., & Bilgilioglu, B. (2020). Oppurtunities provided by remote sensing data for watershed management: Example of konya closed basin. International Journal of Engineering and Geosciences, 5(3), 120-129.
  • Saaty, T.L. (1980) The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw: New York, NY, USA, ISBN 978-0070543713.
  • Sajil Kumar, P. J., Elango, L., & Schneider, M. (2022). GIS and AHP based groundwater potential zones delineation in Chennai River Basin (CRB), India. Sustainability, 14(3), 1830.
  • Uc Castillo, J. L., Martínez Cruz, D. A., Ramos Leal, J. A., Tuxpan Vargas, J., Rodríguez Tapia, S. A., & Marín Celestino, A. E. (2022). Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water, 14(13), 2138.
  • Maity, B., Mallick, S. K., Das, P., & Rudra, S. (2022). Comparative analysis of groundwater potentiality zone using fuzzy AHP, frequency ratio and Bayesian weights of evidence methods. Applied Water Science, 12(4), 63.
  • Raihan, A. T., Bauer, S., & Mukhopadhaya, S. (2022). An AHP based approach to forecast groundwater level at potential recharge zones of Uckermark District, Brandenburg, Germany. Scientific Reports, 12(1), 6365.
  • Polat, Z. A., Alkan, M., & Sürmeneli, H. G. (2017). Determining strategies for the cadastre 2034 vision using an AHP-Based SWOT analysis: A case study for the turkish cadastral and land administration system. Land use policy, 67, 151-166.
  • Arulbalaji, P. & Gurugnanam, B. (2016) An Integrated Study to Assess the Groundwater Potential Zone Using Geospatial Tool in Salem District, South India, Journal of Hydrogeology & Hydrologic Engineering, 5(2), 1-7
  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques-based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific reports, 9(1), 2082.
  • Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41-52.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9, 39-54.
  • Aghayev, A. (2018). Determining of different inundated land use in Salyan plain during 2010 the Kura River flood through GIS and remote sensing tools. International Journal of Engineering and Geosciences, 3(3), 80-86.
  • Lone, M. S., Nagaraju, D., Mahadavesamy, G., & Siddalingamurthy, S. (2013). Applications of GIS and remote sensing to delineate artificial recharge zones (DARZ) of groundwater in HD Kote taluk, Mysore district, Karnataka, India. International Journal of Remote Sensing and Geosciences, 2(3), 92-97.
  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2007) Remote Sensing and Image Interpretation, Wiley, Hoboken.
  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223-234.
  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8, 7059-7071.
  • Saaty, T. L. (1990) Decision making for leaders: the analytic hierarchy process for decisions in a complex world (RWS publications).
  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64, 373-381.
  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental geology, 58, 185-195.
  • Das, S. (2017). Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Modeling Earth Systems and Environment, 3(4), 1589-1599.
  • Khorrami, B., & Kamran, K. V. (2022). A fuzzy multi-criteria decision-making approach for the assessment of forest health applying hyper spectral imageries: A case study from Ramsar forest, North of Iran. International Journal of Engineering and Geosciences, 7(3), 214-220.
  • Kumar, M. G., Agarwal, A. K., & Bali, R. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 36, 323-334.
  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development--an approach. International Journal of Remote Sensing, 24(5), 993-1008.
  • Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International journal of Remote sensing, 17(10), 1867-1884.
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172.
  • Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2016). Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9, 39-54.
  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied water science, 7, 1377-1389.
There are 29 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Rajaveni Sundara Pandian 0000-0003-3470-2142

Sıdesh U 0000-0001-5101-2376

Prasanna Balaji K 0000-0001-5297-5924

Lakshmi Narayanan R 0000-0001-8679-7054

Early Pub Date May 8, 2023
Publication Date October 15, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Sundara Pandian, R., U, S., K, P. B., R, L. N. (2023). Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process. International Journal of Engineering and Geosciences, 8(3), 318-328. https://doi.org/10.26833/ijeg.1190998
AMA Sundara Pandian R, U S, K PB, R LN. Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process. IJEG. October 2023;8(3):318-328. doi:10.26833/ijeg.1190998
Chicago Sundara Pandian, Rajaveni, Sıdesh U, Prasanna Balaji K, and Lakshmi Narayanan R. “Identification of Groundwater Potential for Urban Development Using Multi-Criteria Decision-Making Method of Analytical Hierarchy Process”. International Journal of Engineering and Geosciences 8, no. 3 (October 2023): 318-28. https://doi.org/10.26833/ijeg.1190998.
EndNote Sundara Pandian R, U S, K PB, R LN (October 1, 2023) Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process. International Journal of Engineering and Geosciences 8 3 318–328.
IEEE R. Sundara Pandian, S. U, P. B. K, and L. N. R, “Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process”, IJEG, vol. 8, no. 3, pp. 318–328, 2023, doi: 10.26833/ijeg.1190998.
ISNAD Sundara Pandian, Rajaveni et al. “Identification of Groundwater Potential for Urban Development Using Multi-Criteria Decision-Making Method of Analytical Hierarchy Process”. International Journal of Engineering and Geosciences 8/3 (October 2023), 318-328. https://doi.org/10.26833/ijeg.1190998.
JAMA Sundara Pandian R, U S, K PB, R LN. Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process. IJEG. 2023;8:318–328.
MLA Sundara Pandian, Rajaveni et al. “Identification of Groundwater Potential for Urban Development Using Multi-Criteria Decision-Making Method of Analytical Hierarchy Process”. International Journal of Engineering and Geosciences, vol. 8, no. 3, 2023, pp. 318-2, doi:10.26833/ijeg.1190998.
Vancouver Sundara Pandian R, U S, K PB, R LN. Identification of groundwater potential for urban development using multi-criteria decision-making method of analytical hierarchy process. IJEG. 2023;8(3):318-2.