Research Article
BibTex RIS Cite

Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects

Year 2024, Volume: 9 Issue: 2, 221 - 232, 28.07.2024
https://doi.org/10.26833/ijeg.1391957

Abstract

The lakes represent crucial surface water resources and an integral part of wetlands. The most concerning aspect of the degradation of these areas is the complete drying up of the lakes. In the Mediterranean region, successive changes in land use practices in the context of climate change have strongly influenced wetland areas. In this study, we used Landsat TM, OLI, and OLI-2 satellite images to monitor the water surface area in two representative lakes (Aoua and Ifrah) of the Tabular Middle Atlas and to map land use across the entire study area. To extract information related to lakes and land use, we employed the Support Vector Machine machine learning algorithm, widely used in remote sensing studies. However, we identified drought periods from precipitation data using the Standardized Precipitation Index (SPI) recommended by the World Meteorological Organization (WMO). The results obtained from the processing of Landsat satellite images indicate a significant reduction in the surface area of the lakes, with periods of drying for Aoua lake, endangering their fragile ecosystems and biodiversity. The critical situation of the two lakes is attributed to a combination of natural and anthropogenic factors. The analysis of climatic data shows a significant climate change from the 1980s, with long periods of drought. In parallel, the study area has undergone remarkable modifications in land use patterns, mainly characterized by a significant extension of irrigated agricultural surfaces to the detriment of grazing and rainfed lands. In three decades, the area of irrigated crops has increased from approximately 1300 hectares in 1985 to 7070 hectares in 2022, representing an increase of 542%. The findings presented in this study reveal the extent of lake degradation in the TMA and reflect the alarming decline in groundwater levels. This situation indicates the necessity of formulating a strategy to protect water resources and wetlands in the Middle Atlas.

References

  • Raneesh, K. Y. (2014). Impact of climate change on water resources. Journal of Earth Science & Climatic Change, 5(3), 1. http://dx.doi.org/10.4172/2157-7617.1000185
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., ... & Ward, P. J. (2016). The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1-16. https://doi.org/10.1038/srep38495
  • FAO. (2018). Progress on level of water stress - Global baseline for SDG 6 Indicator 6.4.2.
  • Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w
  • Huang, Z., Yuan, X., & Liu, X. (2021). The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. Journal of Hydrology, 601, 126658. https://doi.org/10.1016/j.jhydrol.2021.126658
  • Connor, R., & Miletto, M. (2023). Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2023: partenariats et coopération pour l’eau; résumé.
  • Williamson, C. E., Saros, J. E., Vincent, W. F., & Smol, J. P. (2009). Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6part2), 2273-2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273
  • Beltrame, C., Perennou, C., & Guelmami, A. (2015). Évolution de l’occupation du sol dans les zones humides littorales du Bassin méditerranéen de 1975 à 2005. Méditerranée. Revue géographique des pays méditerranéens/Journal of Mediterranean geography, (125), 97-111. https://doi.org/10.4000/mediterranee.8046
  • Abdelhalim, A., Sefelnasr, A., & Ismail, E. (2020). Response of the interaction between surface water and groundwater to climate change and proposed megastructure. Journal of African Earth Sciences, 162, 103723. https://doi.org/10.1016/j.jafrearsci.2019.103723
  • Emami, H., & Zarei, A. (2021). Modelling lake water's surface changes using environmental and remote sensing data: A case study of lake urmia. Remote Sensing Applications: Society and Environment, 23, 100594. https://doi.org/10.1016/j.rsase.2021.100594
  • Zhang, R., Zhu, L., Ma, Q., Chen, H., Liu, C., & Zubaida, M. (2021). The consecutive lake group water storage variations and their dynamic response to climate change in the central Tibetan Plateau. Journal of Hydrology, 601, 126615. https://doi.org/10.1016/j.jhydrol.2021.126615
  • Kayastha, M. B., Ye, X., Huang, C., & Xue, P. (2022). Future rise of the Great Lakes water levels under climate change. Journal of Hydrology, 612, 128205. https://doi.org/10.1016/j.jhydrol.2022.128205
  • Gbetkom, P. G., Crétaux, J. F., Tchilibou, M., Carret, A., Delhoume, M., Bergé-Nguyen, M., & Sylvestre, F. (2023). Lake Chad vegetation cover and surface water variations in response to rainfall fluctuations under recent climate conditions (2000− 2020). Science of The Total Environment, 857, 159302. https://doi.org/10.1016/j.scitotenv.2022.159302
  • Zhang, Y., An, C. B., Zheng, L. Y., Liu, L. Y., Zhang, W. S., Lu, C., & Zhang, Y. Z. (2023). Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Science of The Total Environment, 869, 161665. https://doi.org/10.1016/j.scitotenv.2023.161665
  • Davraz, A., Sener, E., & Sener, S. (2019). Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. Journal of African Earth Sciences, 158, 103569. https://doi.org/10.1016/j.jafrearsci.2019.103569
  • Liu, Y., Wu, G., Fan, X., Gan, G., Wang, W., & Liu, Y. (2022). Hydrological impacts of land use/cover changes in the Lake Victoria basin. Ecological Indicators, 145, 109580. https://doi.org/10.1016/j.ecolind.2022.109580
  • Amyay, M., Laaouane, M., & Akdim, B. (2001). La pression anthropique sur les ressources en eau souterraine dans le Moyen Atlas. Exemple de la dépression d'Afourgagh. Mosella, 25(3-4), 341-352.
  • Sayad, A., & Chakiri, S. (2010). Impact of the evolution of the climate on the level of Dayet Aoua in the Moroccan Middle Atlas. Science et Changements planétaires/Sécheresse, 21(4), 245-251. https://doi.org/10.1684/sec.2010.0252
  • Sayad, A., Chakiri, S., Martin, C., Bejjaji, Z., & Echarfaoui, H. (2011). Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc). Physio-Géo. Géographie Physique et Environnement, 5, 251-268. https://doi.org/10.4000/physio-geo.2145
  • Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., ... & Liu, J. (2019). Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177, 189-201. https://doi.org/10.1016/j.catena.2019.02.020
  • Bastawesy, M. A., Khalaf, F. I., & Arafat, S. M. (2008). The use of remote sensing and GIS for the estimation of water loss from Tushka lakes, southwestern desert, Egypt. Journal of African Earth Sciences, 52(3), 73-80. https://doi.org/10.1016/j.jafrearsci.2008.03.006
  • Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https://doi.org/10.1016/j.rsase.2020.100347
  • Gu, Z., Zhang, Y., & Fan, H. (2021). Mapping inter-and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat time-series and water level data. Journal of Hydrology, 601, 126644. https://doi.org/10.1016/j.jhydrol.2021.126644
  • Jumaah, H. J., Ameen, M. H., Mohamed, G. H., & Ajaj, Q. M. (2022). Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 313-321. https://doi.org/10.1016/j.ejrs.2022.01.013
  • Cazzaniga, I., Zibordi, G., Alikas, K., & Kratzer, S. (2023). Temporal changes in the remote sensing reflectance at Lake Vänern. Journal of Great Lakes Research, 49(2), 357-367. https://doi.org/10.1016/j.jglr.2023.01.006
  • Su, Y., Ran, Y., Zhang, G., & Li, X. (2023). Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. Science of the Total Environment, 880, 163355. https://doi.org/10.1016/j.scitotenv.2023.163355
  • Wang, C., Xie, W., Li, T., Wu, G., Wu, Y., Wang, Q., ... & Pan, X. (2023). Analysis of Spatial and Temporal Variation in Water Coverage in the Sub-Lakes of Poyang Lake Based on Multi-Source Remote Sensing. Remote Sensing, 15(11), 2788. https://doi.org/10.3390/rs15112788
  • Urbański, J. A. (2022). Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. International Journal of Applied Earth Observation and Geoinformation, 112, 102911. https://doi.org/10.1016/j.jag.2022.102911
  • Jawak, S. D., Kulkarni, K., & Luis, A. J. (2015). A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes. Advances in Remote Sensing, 4(3), 196-213. https://doi.org/10.4236/ars.2015.43016
  • Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284
  • Bentayeb, A., & Leclerc, C. (1977). Le Causse moyen atlasique. Ressources en Eaux du Maroc, Tome3, Domaines Atlasiques et Sud-Atlasiques, 37-66.
  • El-Bouhali, A. (2023). L’évolution des surfaces irriguées et leur impact sur les ressources en eau dans le contexte climatique actuel au Moyen Atlas tabulaire. [Thèse de doctorat. Université Sidi Mohamed Ben Abdellah].
  • Jennan, L. (1986). Mutations récentes des campagnes du Moyen Atlas et de ses bordures. Méditerranée, 59(4), 49-62.
  • Ozdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sensing, 2(9), 2274-2304. https://doi.org/10.3390/rs2092274
  • Bian, J., Li, A., Lei, G., Zhang, Z., & Nan, X. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 63-76. https://doi.org/10.1016/j.isprsjprs.2020.02.011
  • Correia, R., Duarte, L., Teodoro, A. C., & Monteiro, A. (2018). Processing image to geographical information systems (PI2GIS)—A learning tool for QGIS. Education Sciences, 8(2), 83. https://doi.org/10.3390/educsci8020083
  • Yawson, D. O., Adu, M. O., & Osei, K. N. (2018). Spatial assessment of sugarcane (Saccharurn spp. L.) production to feed the Komenda Sugar Factory, Ghana. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00903
  • Obodai, J., Adjei, K. A., Odai, S. N., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247-256. https://doi.org/10.1016/j.rsase.2018.10.007
  • Congedo, L. (2021). Semi-automatic classification plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
  • Belenok, V., Noszczyk, T., Hebryn-Baidy, L., & Kryachok, S. (2021). Investigating anthropogenically transformed landscapes with remote sensing. Remote Sensing Applications: Society and Environment, 24, 100635. https://doi.org/10.1016/j.rsase.2021.100635
  • https://earthexplorer.usgs.gov
  • Zheng, B., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112. https://doi.org/10.1016/j.jag.2014.07.002
  • Sharma, A. K., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Bandyopadhyay, S., & Corgne, S. (2018). Irrigation history estimation using multitemporal Landsat satellite images: Application to an intensive groundwater irrigated agricultural watershed in India. Remote Sensing, 10(6), 893. https://doi.org/10.3390/rs10060893
  • Rana, V. K., & Suryanarayana, T. M. V. (2020). Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using Sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351
  • Avcı, C., Budak, M., Yağmur, N., & Balçık, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
  • WMO. (World Meteorological Organization) (2012). Standardized Precipitation Index User Guide, 24.
  • Guttman, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  • Barakat, F., & Handoufe, A. (1997). La sècheresse agricole au Maroc. Sustainability of Water Resources Increasing Uncertainty, 31-41.
  • Stour, L., & Agoumi, A. (2008). Climatic drought in Morocco during the last decades. Hydroécologie Appliquée, 16, 215-232.
  • Pachauri, R. K., & Reisinger, A. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
  • Stocker, T. F., Qin, D., Plattner, G-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate Change 2013: The Physical Science Basis.
  • Badidi, B. (1995). La révolution des vergers de rosacées dans le Moyen-Atlas. [Doctoral dissertation, thèse de doctorat, Faculté des Lettres et Sciences Humaines, Limoges].
  • Jihad, M. D. E. (2016). Climate change and rural development in the middle Atlas Mountains and fringe areas (Morocco). Journal of Alpine Research| Revue de Géographie Alpine, (104-4). https://doi.org/10.4000/rga.3465
  • Tag, B. (1996). Les potentialités de développement du Moyen-Atlas oriental et leur appréciation par les acteurs locaux/Development possibilities in the eastern Middle Atlas Mountains and their assessment by local actors. Revue de Géographie Alpine, 84(4), 51-60.
  • Zhang, J., Ding, J., Wu, P., Tan, J., Huang, S., Teng, D., ... & Chen, W. (2020). Assessing arid inland lake watershed area and vegetation response to multiple temporal scales of drought across the Ebinur Lake Watershed. Scientific Reports, 10(1), 1354. https://doi.org/10.1038/s41598-020-57898-8
  • Xu, Y., Gun, Z., Zhao, J., & Cheng, X. (2022). Variations in lake water storage over Inner Mongolia during recent three decades based on multi-mission satellites. Journal of Hydrology, 609, 127719. https://doi.org/10.1016/j.jhydrol.2022.127719
Year 2024, Volume: 9 Issue: 2, 221 - 232, 28.07.2024
https://doi.org/10.26833/ijeg.1391957

Abstract

References

  • Raneesh, K. Y. (2014). Impact of climate change on water resources. Journal of Earth Science & Climatic Change, 5(3), 1. http://dx.doi.org/10.4172/2157-7617.1000185
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., ... & Ward, P. J. (2016). The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1-16. https://doi.org/10.1038/srep38495
  • FAO. (2018). Progress on level of water stress - Global baseline for SDG 6 Indicator 6.4.2.
  • Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11(1), 3044. https://doi.org/10.1038/s41467-020-16757-w
  • Huang, Z., Yuan, X., & Liu, X. (2021). The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. Journal of Hydrology, 601, 126658. https://doi.org/10.1016/j.jhydrol.2021.126658
  • Connor, R., & Miletto, M. (2023). Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2023: partenariats et coopération pour l’eau; résumé.
  • Williamson, C. E., Saros, J. E., Vincent, W. F., & Smol, J. P. (2009). Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6part2), 2273-2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273
  • Beltrame, C., Perennou, C., & Guelmami, A. (2015). Évolution de l’occupation du sol dans les zones humides littorales du Bassin méditerranéen de 1975 à 2005. Méditerranée. Revue géographique des pays méditerranéens/Journal of Mediterranean geography, (125), 97-111. https://doi.org/10.4000/mediterranee.8046
  • Abdelhalim, A., Sefelnasr, A., & Ismail, E. (2020). Response of the interaction between surface water and groundwater to climate change and proposed megastructure. Journal of African Earth Sciences, 162, 103723. https://doi.org/10.1016/j.jafrearsci.2019.103723
  • Emami, H., & Zarei, A. (2021). Modelling lake water's surface changes using environmental and remote sensing data: A case study of lake urmia. Remote Sensing Applications: Society and Environment, 23, 100594. https://doi.org/10.1016/j.rsase.2021.100594
  • Zhang, R., Zhu, L., Ma, Q., Chen, H., Liu, C., & Zubaida, M. (2021). The consecutive lake group water storage variations and their dynamic response to climate change in the central Tibetan Plateau. Journal of Hydrology, 601, 126615. https://doi.org/10.1016/j.jhydrol.2021.126615
  • Kayastha, M. B., Ye, X., Huang, C., & Xue, P. (2022). Future rise of the Great Lakes water levels under climate change. Journal of Hydrology, 612, 128205. https://doi.org/10.1016/j.jhydrol.2022.128205
  • Gbetkom, P. G., Crétaux, J. F., Tchilibou, M., Carret, A., Delhoume, M., Bergé-Nguyen, M., & Sylvestre, F. (2023). Lake Chad vegetation cover and surface water variations in response to rainfall fluctuations under recent climate conditions (2000− 2020). Science of The Total Environment, 857, 159302. https://doi.org/10.1016/j.scitotenv.2022.159302
  • Zhang, Y., An, C. B., Zheng, L. Y., Liu, L. Y., Zhang, W. S., Lu, C., & Zhang, Y. Z. (2023). Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Science of The Total Environment, 869, 161665. https://doi.org/10.1016/j.scitotenv.2023.161665
  • Davraz, A., Sener, E., & Sener, S. (2019). Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. Journal of African Earth Sciences, 158, 103569. https://doi.org/10.1016/j.jafrearsci.2019.103569
  • Liu, Y., Wu, G., Fan, X., Gan, G., Wang, W., & Liu, Y. (2022). Hydrological impacts of land use/cover changes in the Lake Victoria basin. Ecological Indicators, 145, 109580. https://doi.org/10.1016/j.ecolind.2022.109580
  • Amyay, M., Laaouane, M., & Akdim, B. (2001). La pression anthropique sur les ressources en eau souterraine dans le Moyen Atlas. Exemple de la dépression d'Afourgagh. Mosella, 25(3-4), 341-352.
  • Sayad, A., & Chakiri, S. (2010). Impact of the evolution of the climate on the level of Dayet Aoua in the Moroccan Middle Atlas. Science et Changements planétaires/Sécheresse, 21(4), 245-251. https://doi.org/10.1684/sec.2010.0252
  • Sayad, A., Chakiri, S., Martin, C., Bejjaji, Z., & Echarfaoui, H. (2011). Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc). Physio-Géo. Géographie Physique et Environnement, 5, 251-268. https://doi.org/10.4000/physio-geo.2145
  • Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., ... & Liu, J. (2019). Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177, 189-201. https://doi.org/10.1016/j.catena.2019.02.020
  • Bastawesy, M. A., Khalaf, F. I., & Arafat, S. M. (2008). The use of remote sensing and GIS for the estimation of water loss from Tushka lakes, southwestern desert, Egypt. Journal of African Earth Sciences, 52(3), 73-80. https://doi.org/10.1016/j.jafrearsci.2008.03.006
  • Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https://doi.org/10.1016/j.rsase.2020.100347
  • Gu, Z., Zhang, Y., & Fan, H. (2021). Mapping inter-and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat time-series and water level data. Journal of Hydrology, 601, 126644. https://doi.org/10.1016/j.jhydrol.2021.126644
  • Jumaah, H. J., Ameen, M. H., Mohamed, G. H., & Ajaj, Q. M. (2022). Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 313-321. https://doi.org/10.1016/j.ejrs.2022.01.013
  • Cazzaniga, I., Zibordi, G., Alikas, K., & Kratzer, S. (2023). Temporal changes in the remote sensing reflectance at Lake Vänern. Journal of Great Lakes Research, 49(2), 357-367. https://doi.org/10.1016/j.jglr.2023.01.006
  • Su, Y., Ran, Y., Zhang, G., & Li, X. (2023). Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. Science of the Total Environment, 880, 163355. https://doi.org/10.1016/j.scitotenv.2023.163355
  • Wang, C., Xie, W., Li, T., Wu, G., Wu, Y., Wang, Q., ... & Pan, X. (2023). Analysis of Spatial and Temporal Variation in Water Coverage in the Sub-Lakes of Poyang Lake Based on Multi-Source Remote Sensing. Remote Sensing, 15(11), 2788. https://doi.org/10.3390/rs15112788
  • Urbański, J. A. (2022). Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. International Journal of Applied Earth Observation and Geoinformation, 112, 102911. https://doi.org/10.1016/j.jag.2022.102911
  • Jawak, S. D., Kulkarni, K., & Luis, A. J. (2015). A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes. Advances in Remote Sensing, 4(3), 196-213. https://doi.org/10.4236/ars.2015.43016
  • Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284
  • Bentayeb, A., & Leclerc, C. (1977). Le Causse moyen atlasique. Ressources en Eaux du Maroc, Tome3, Domaines Atlasiques et Sud-Atlasiques, 37-66.
  • El-Bouhali, A. (2023). L’évolution des surfaces irriguées et leur impact sur les ressources en eau dans le contexte climatique actuel au Moyen Atlas tabulaire. [Thèse de doctorat. Université Sidi Mohamed Ben Abdellah].
  • Jennan, L. (1986). Mutations récentes des campagnes du Moyen Atlas et de ses bordures. Méditerranée, 59(4), 49-62.
  • Ozdogan, M., Yang, Y., Allez, G., & Cervantes, C. (2010). Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sensing, 2(9), 2274-2304. https://doi.org/10.3390/rs2092274
  • Bian, J., Li, A., Lei, G., Zhang, Z., & Nan, X. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 63-76. https://doi.org/10.1016/j.isprsjprs.2020.02.011
  • Correia, R., Duarte, L., Teodoro, A. C., & Monteiro, A. (2018). Processing image to geographical information systems (PI2GIS)—A learning tool for QGIS. Education Sciences, 8(2), 83. https://doi.org/10.3390/educsci8020083
  • Yawson, D. O., Adu, M. O., & Osei, K. N. (2018). Spatial assessment of sugarcane (Saccharurn spp. L.) production to feed the Komenda Sugar Factory, Ghana. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00903
  • Obodai, J., Adjei, K. A., Odai, S. N., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247-256. https://doi.org/10.1016/j.rsase.2018.10.007
  • Congedo, L. (2021). Semi-automatic classification plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
  • Belenok, V., Noszczyk, T., Hebryn-Baidy, L., & Kryachok, S. (2021). Investigating anthropogenically transformed landscapes with remote sensing. Remote Sensing Applications: Society and Environment, 24, 100635. https://doi.org/10.1016/j.rsase.2021.100635
  • https://earthexplorer.usgs.gov
  • Zheng, B., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112. https://doi.org/10.1016/j.jag.2014.07.002
  • Sharma, A. K., Hubert-Moy, L., Buvaneshwari, S., Sekhar, M., Ruiz, L., Bandyopadhyay, S., & Corgne, S. (2018). Irrigation history estimation using multitemporal Landsat satellite images: Application to an intensive groundwater irrigated agricultural watershed in India. Remote Sensing, 10(6), 893. https://doi.org/10.3390/rs10060893
  • Rana, V. K., & Suryanarayana, T. M. V. (2020). Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using Sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351
  • Avcı, C., Budak, M., Yağmur, N., & Balçık, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10. https://doi.org/10.26833/ijeg.987605
  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
  • WMO. (World Meteorological Organization) (2012). Standardized Precipitation Index User Guide, 24.
  • Guttman, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  • Barakat, F., & Handoufe, A. (1997). La sècheresse agricole au Maroc. Sustainability of Water Resources Increasing Uncertainty, 31-41.
  • Stour, L., & Agoumi, A. (2008). Climatic drought in Morocco during the last decades. Hydroécologie Appliquée, 16, 215-232.
  • Pachauri, R. K., & Reisinger, A. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
  • Stocker, T. F., Qin, D., Plattner, G-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate Change 2013: The Physical Science Basis.
  • Badidi, B. (1995). La révolution des vergers de rosacées dans le Moyen-Atlas. [Doctoral dissertation, thèse de doctorat, Faculté des Lettres et Sciences Humaines, Limoges].
  • Jihad, M. D. E. (2016). Climate change and rural development in the middle Atlas Mountains and fringe areas (Morocco). Journal of Alpine Research| Revue de Géographie Alpine, (104-4). https://doi.org/10.4000/rga.3465
  • Tag, B. (1996). Les potentialités de développement du Moyen-Atlas oriental et leur appréciation par les acteurs locaux/Development possibilities in the eastern Middle Atlas Mountains and their assessment by local actors. Revue de Géographie Alpine, 84(4), 51-60.
  • Zhang, J., Ding, J., Wu, P., Tan, J., Huang, S., Teng, D., ... & Chen, W. (2020). Assessing arid inland lake watershed area and vegetation response to multiple temporal scales of drought across the Ebinur Lake Watershed. Scientific Reports, 10(1), 1354. https://doi.org/10.1038/s41598-020-57898-8
  • Xu, Y., Gun, Z., Zhao, J., & Cheng, X. (2022). Variations in lake water storage over Inner Mongolia during recent three decades based on multi-mission satellites. Journal of Hydrology, 609, 127719. https://doi.org/10.1016/j.jhydrol.2022.127719
There are 57 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing, Geographical Information Systems (GIS) in Planning
Journal Section Articles
Authors

Abdelaziz El- Bouhali 0000-0003-2581-4580

Mhamed Amyay 0009-0004-4207-3539

Khadija El Ouazanı Ech- Chahdi 0009-0000-2888-2998

Early Pub Date July 23, 2024
Publication Date July 28, 2024
Submission Date November 16, 2023
Acceptance Date January 28, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA El- Bouhali, A., Amyay, M., & El Ouazanı Ech- Chahdi, K. (2024). Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences, 9(2), 221-232. https://doi.org/10.26833/ijeg.1391957
AMA El- Bouhali A, Amyay M, El Ouazanı Ech- Chahdi K. Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. IJEG. July 2024;9(2):221-232. doi:10.26833/ijeg.1391957
Chicago El- Bouhali, Abdelaziz, Mhamed Amyay, and Khadija El Ouazanı Ech- Chahdi. “Changes in Water Surface Area of the Middle Atlas-Morocco Lakes: A Response to Climate and Human Effects”. International Journal of Engineering and Geosciences 9, no. 2 (July 2024): 221-32. https://doi.org/10.26833/ijeg.1391957.
EndNote El- Bouhali A, Amyay M, El Ouazanı Ech- Chahdi K (July 1, 2024) Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. International Journal of Engineering and Geosciences 9 2 221–232.
IEEE A. El- Bouhali, M. Amyay, and K. El Ouazanı Ech- Chahdi, “Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects”, IJEG, vol. 9, no. 2, pp. 221–232, 2024, doi: 10.26833/ijeg.1391957.
ISNAD El- Bouhali, Abdelaziz et al. “Changes in Water Surface Area of the Middle Atlas-Morocco Lakes: A Response to Climate and Human Effects”. International Journal of Engineering and Geosciences 9/2 (July 2024), 221-232. https://doi.org/10.26833/ijeg.1391957.
JAMA El- Bouhali A, Amyay M, El Ouazanı Ech- Chahdi K. Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. IJEG. 2024;9:221–232.
MLA El- Bouhali, Abdelaziz et al. “Changes in Water Surface Area of the Middle Atlas-Morocco Lakes: A Response to Climate and Human Effects”. International Journal of Engineering and Geosciences, vol. 9, no. 2, 2024, pp. 221-32, doi:10.26833/ijeg.1391957.
Vancouver El- Bouhali A, Amyay M, El Ouazanı Ech- Chahdi K. Changes in water surface area of the Middle Atlas-Morocco lakes: A response to climate and human effects. IJEG. 2024;9(2):221-32.