Research Article
BibTex RIS Cite

The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy

Year 2025, Volume: 10 Issue: 2, 164 - 172
https://doi.org/10.26833/ijeg.1535675

Abstract

The popularity of Unmanned Aerial Vehicle (UAV) photogrammetry is growing worldwide due to its low-cost advantage in collecting high-resolution 3D topographic models. This research aims to ascertain the impact of Ground Control Points (GCPs) located on building roofs on facade accuracy. A UAV survey covering 10.37 hectares was conducted to achieve this goal. The research utilised 91 GCPs for geo-referencing, with 38 on the ground and 53 on the roofs of the buildings in the area. Images were obtained with three different flight patterns: single (S), double (D), and circular (C), which represent flight routes. The images acquired from the flights have been subjected to two distinct GCP configurations, and two models were obtained for each flight pattern. The point cloud produced by a robotic total station was used to ensure the accuracy of the facades of the buildings in the models. The standard deviation (std. dev.) of the distances between the points on the facade and the reference planes (RPs) were used as a measure of accuracy. The std. dev. values of the model facades were compared by each other while considering the number of points of the surfaces. Average std. dev. values of the models fluctuate within a range of 7 to 11 cm

References

  • Ajayi, O. G., Palmer, M., & Salubi, A. A. (2018). Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment, 11, 220-230. https://doi.org/10.1016/j.rsase.2018.07.007
  • Szypuła, B. (2024). Accuracy of UAV-based DEMs without ground control points. Geoinformatica, 28(1), 1-28. https://doi.org/10.1007/s10707-023-00498-1
  • Sefercik, U. G., Kavzoglu, T., Colkesen, İ., Nazar, M., Ozturk, M. Y., Adalı, S., & Din, S. (2023). 3D positioning accuracy and land cover classification performance of multispectral RTK UAVs. International Journal of Engineering and Geosciences. 8(2), 119-128. https://doi.org/10.26833/ijeg.1074791
  • Karataş, L., Alptekin, A. & Yakar, M. (2022). Creating Architectural Surveys of Traditional Buildings with the Help of Terrestrial Laser Scanning Method (TLS) and Orthophotos: Historical Diyarbakır Sur Mansion. Advanced LiDAR, 2(2), 54-63.
  • 5.Murtiyoso, A., Grussenmeyer, P., Börlin, N., Vandermeerschen, J., & Freville, T. (2018). Open source and independent methods for bundle adjustment assessment in close-range UAV photogrammetry. Drones. 2(1), 1–18. https://doi.org/10.3390/drones2010003
  • Colica, E., D’Amico, S., Lannuci, R., Martino, S., Gauci, A., Galone, L., Galea, P., & Paciello, A. (2021). Using unmanned aerial vehicle photogrammetry for digital geological surveys: case study of Selmun promontory, northern of Malta. Environmental Earth Sciences, 80(17), 1–14. https://doi.org/10.1007/s12665-021-09846-6
  • Maraş, E. E., & Nasery, M. N. (2023). Investigating the length, area and volume measurement accuracy of UAV-Based oblique photogrammetry models produced with and without ground control points. International Journal of Engineering and Geosciences. 8(1), 32–51. https://doi.org/10.26833/ijeg.1017176
  • Đurić, I., Vasiljević, I., Obradović, M., Stojaković, V., Kićanović, J., & Obradović, R. (2021). Comparative analysis of open-source and commercial photogrammetry software for cultural heritage. eCAADe 2021 Towards a New, Configurable Architecture, 2, 8-10, Novi Sad, Serbia.
  • Jarahizadeh, S., & Salehi, B. (2024). A Comparative Analysis of UAV Photogrammetric Software Performance for Forest 3D Modeling: A Case Study Using Agisoft Photoscan, PIX4DMapper, and DJI Terra. Sensors, 24(286), 1–15. https://doi.org/10.3390/s24010286
  • Janoušek, J., Jambor, V., Marcoň, P., Dohnal, P., Synková, P., & Fiala, P. (2021). Using UAV-based photogrammetry to obtain correlation between the vegetation indices and chemical analysis of agricultural crops. Remote Sensing, 13(10), 1878. doi: 10.3390/rs13101878.
  • Frey, J., Kovach, K., Stemmler, S., & Koch, B. (2018). UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sensing, 10(912),1–12. https://doi.org/10.3390/rs10060912
  • İlci, V., & Ozulu, İ. M. (2016). The Utility of PPP Technique in Archaeological Surveying Applications: A Case Study in Sapinuva Excavation. Harita Teknolojileri Elektronik Dergisi, 8(3), 1-9. doi: 10.15659/hartek.16.09.303.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24–33.
  • 14.Yakar, M., Yılmaz, H. M. & Mutluoǧlu, Ö. (2010). Comparative evaluation of excavation volume by TLS and total topographic station-based methods. Lasers in Eng, 19, 331-345
  • Özdemir, İ., & Güngör, A. (2024). Documentation of Archaeological Excavation Sites with Terrestrial Laser Scanning and UAV Photogrammetry Methods. Advanced LiDAR, 4(1), 28-32.
  • Mandirola, M., Casarotti, C., Peloso, S., Lanese, I., Brunesi, E., Senaldi, I., Monti, A., & Facchetti, C. (2021). Guidelines for the use of Unmanned Aerial Systems for fast photogrammetry-oriented mapping in emergency response scenarios. International Journal of Disaster Risk Reduction, 58(102207), 1-15. https://doi.org/10.1016/j.ijdrr.2021.102207.
  • Erdoğan, A., Görken, M., & Kabadayı, A. (2022). Study on the use of unmanned aerial vehicles in open mine sites: A case study of Ordu Province Mine Site. Advanced UAV, 2(2), 35-40.
  • Douglas, A., Langenderfer, A. M., & Johnson, C. (2024). Road Condition Monitoring Utilizing UAV Photogrammetry Aligned to Principal Curve of Mine Haul Truck Path. Mining, Metallurgy & Exploration, 41, 61-72. https://doi.org/10.1007/s42461-023-00877-0
  • Polat, N., & Akça, Ş. (2023). Assessing road roughness using UAV-derived dense point clouds. Mersin Photogrammetry Journal, 5(2), 75-81. https://doi.org/10.53093/mephoj.1358902
  • Aykut, N. O. (2019). İnsansız hava araçlarının kıyı çizgisinin belirlenmesinde kullanılabilirliğinin araştırılması. Geomatik, 4(2), 141-146. https://doi.org/10.29128/geomatik.503055
  • Budiharto, W., Irwansyah, E., Suroso, J. S., Chowanda, A., Ngarianto, H., & Gunawan, A. A. S. (2021). Mapping and 3D modelling using quadrotor drone and GIS software. Journal of Big Data, 8(1), 1-12. https://doi.org/10.1186/s40537-021-00436-8
  • Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2), 97–107.https://doi.org/10.1007/s12145-013-0142-2
  • Lovitt, J., Rahman, M. M., & McDermid, G. J. (2017). Assessing the value of UAV photogrammetry for characterizing terrain in complex peatlands. Remote Sensing, 9(7), 715. https://doi.org/10.3390/rs9070715
  • Pathak, S., Acharya, S., Bk, S., Karn, G., Thapa, U. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096
  • Türk, T., Tunalioglu, N., Erdogan, B., Ocalan, T., & Gurturk, M. (2022). Accuracy assessment of UAV-post-processing kinematic (PPK) and UAV-traditional (with ground control points) georeferencing methods. Environmental Monitoring and Assessment, 194, 476. https://doi.org/10.1007/s10661-022-10170-0
  • Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., & Enciso, J. (2021). Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/ijgi10050285
  • Mesas-Carrascosa, F. J., García, M. D. N., De Larriva, J. E. M., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1-12. https://doi.org/10.3390/s16111838
  • Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1-19. https://doi.org/10.3390/rs10101606
  • Akay, S. S., Ozcan, O., Şanlı, F. B., Bayram, B., & Gorum, T. (2021). Assessing the spatial accuracy of UAV-derived products based on variation of flight altitudes. Turkish Journal of Engineering, 5(1), 35-40.
  • Deliry, S. I., & Avdan, U. (2024). Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences, 9(2), 165-190. https://doi.org/10.26833/ijeg.1366146
  • Barba, S., Barbarella, M., Di Benedetto, A., Fiani, M., Gujski, L., & Limongiello, M. (2019). Accuracy assessment of 3d photogrammetric models from an unmanned aerial vehicle. Drones, 3(4), 1–19. https://doi.org/10.3390/drones3040079
  • Chaudhry, M. H., Ahmad, A., & Gulzar, Q. (2020). Impact of uav surveying parameters on mixed urban landuse surface modelling. ISPRS International Journal of Geo-Information, 9(11), 1-17. https://doi.org/10.3390/ijgi9110656
  • Rangel, J. M. G., Gonçalves, G. R., & Pérez, J. A. (2018). The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. International Journal of Remote Sensing, 39(21), 7154–7171. https://doi.org/10.1080/01431161.2018.1515508
  • Dharshan Shylesh, D. S., Manikandan, N., Sivasankar, S., Surendran, D., Jaganathan, R., & Mohan, G. (2023). Influence of quantity, quality, horizontal and vertical distribution of ground control points on the positional accuracy of UAV survey. Applied Geomatics, 15(4), 897–917. https://doi.org/10.1007/s12518-023-00531-w
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.
  • Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221-227. https://doi.org/10.1016/j.measurement.2016.12.002.
  • Taddia, Y., González-García, L., Zambello, E., & Pellegrinelli, A. (2020). Quality assessment of photogrammetric models for façade and building reconstruction using dji phantom 4 rtk. Remote Sensing, 12(19), 1–32. https://doi.org/10.3390/rs12193144
  • Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579–5590. https://doi.org/10.1016/j.aej.2021.04.011
  • Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2020). UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sensing, 12(15), 1-19. https://doi.org/10.3390/rs12152447
  • Liu, X., Lian, X., Yang, W., Wang, F., Han, Y., & Zhang, Y. (2022). Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones, 6(2), 1-15. https://doi.org/10.3390/drones6020030
  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1–10. https://doi.org/10.1016/j.jag.2018.05.015
  • Zhang, Y., Zhang, C., Chen, S., & Chen, X. (2021). Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model. Remote Sensing, 13(19), 3801. https://doi.org/10.3390/rs13193801
  • Jeon, E. I., Yu, S. J., Seok, H. W., Kang, S. J., Lee, K. Y., & Kwon, O. S. (2017). Comparative evaluation of commercial softwares in UAV imagery for cultural heritage recording: case study for traditional building in South Korea. Spatial Information Research, 25(5), 701–712. https://doi.org/10.1007/s41324-017-0137-z
  • Yilmaz, H. M. & Yakar, M. (2008). Computing Of Volume Of Excavation Areas By Digıtal Close Range Photogrammetry. Arabian J. Sci. Eng. 33(1A), 63-784
Year 2025, Volume: 10 Issue: 2, 164 - 172
https://doi.org/10.26833/ijeg.1535675

Abstract

References

  • Ajayi, O. G., Palmer, M., & Salubi, A. A. (2018). Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment, 11, 220-230. https://doi.org/10.1016/j.rsase.2018.07.007
  • Szypuła, B. (2024). Accuracy of UAV-based DEMs without ground control points. Geoinformatica, 28(1), 1-28. https://doi.org/10.1007/s10707-023-00498-1
  • Sefercik, U. G., Kavzoglu, T., Colkesen, İ., Nazar, M., Ozturk, M. Y., Adalı, S., & Din, S. (2023). 3D positioning accuracy and land cover classification performance of multispectral RTK UAVs. International Journal of Engineering and Geosciences. 8(2), 119-128. https://doi.org/10.26833/ijeg.1074791
  • Karataş, L., Alptekin, A. & Yakar, M. (2022). Creating Architectural Surveys of Traditional Buildings with the Help of Terrestrial Laser Scanning Method (TLS) and Orthophotos: Historical Diyarbakır Sur Mansion. Advanced LiDAR, 2(2), 54-63.
  • 5.Murtiyoso, A., Grussenmeyer, P., Börlin, N., Vandermeerschen, J., & Freville, T. (2018). Open source and independent methods for bundle adjustment assessment in close-range UAV photogrammetry. Drones. 2(1), 1–18. https://doi.org/10.3390/drones2010003
  • Colica, E., D’Amico, S., Lannuci, R., Martino, S., Gauci, A., Galone, L., Galea, P., & Paciello, A. (2021). Using unmanned aerial vehicle photogrammetry for digital geological surveys: case study of Selmun promontory, northern of Malta. Environmental Earth Sciences, 80(17), 1–14. https://doi.org/10.1007/s12665-021-09846-6
  • Maraş, E. E., & Nasery, M. N. (2023). Investigating the length, area and volume measurement accuracy of UAV-Based oblique photogrammetry models produced with and without ground control points. International Journal of Engineering and Geosciences. 8(1), 32–51. https://doi.org/10.26833/ijeg.1017176
  • Đurić, I., Vasiljević, I., Obradović, M., Stojaković, V., Kićanović, J., & Obradović, R. (2021). Comparative analysis of open-source and commercial photogrammetry software for cultural heritage. eCAADe 2021 Towards a New, Configurable Architecture, 2, 8-10, Novi Sad, Serbia.
  • Jarahizadeh, S., & Salehi, B. (2024). A Comparative Analysis of UAV Photogrammetric Software Performance for Forest 3D Modeling: A Case Study Using Agisoft Photoscan, PIX4DMapper, and DJI Terra. Sensors, 24(286), 1–15. https://doi.org/10.3390/s24010286
  • Janoušek, J., Jambor, V., Marcoň, P., Dohnal, P., Synková, P., & Fiala, P. (2021). Using UAV-based photogrammetry to obtain correlation between the vegetation indices and chemical analysis of agricultural crops. Remote Sensing, 13(10), 1878. doi: 10.3390/rs13101878.
  • Frey, J., Kovach, K., Stemmler, S., & Koch, B. (2018). UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sensing, 10(912),1–12. https://doi.org/10.3390/rs10060912
  • İlci, V., & Ozulu, İ. M. (2016). The Utility of PPP Technique in Archaeological Surveying Applications: A Case Study in Sapinuva Excavation. Harita Teknolojileri Elektronik Dergisi, 8(3), 1-9. doi: 10.15659/hartek.16.09.303.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24–33.
  • 14.Yakar, M., Yılmaz, H. M. & Mutluoǧlu, Ö. (2010). Comparative evaluation of excavation volume by TLS and total topographic station-based methods. Lasers in Eng, 19, 331-345
  • Özdemir, İ., & Güngör, A. (2024). Documentation of Archaeological Excavation Sites with Terrestrial Laser Scanning and UAV Photogrammetry Methods. Advanced LiDAR, 4(1), 28-32.
  • Mandirola, M., Casarotti, C., Peloso, S., Lanese, I., Brunesi, E., Senaldi, I., Monti, A., & Facchetti, C. (2021). Guidelines for the use of Unmanned Aerial Systems for fast photogrammetry-oriented mapping in emergency response scenarios. International Journal of Disaster Risk Reduction, 58(102207), 1-15. https://doi.org/10.1016/j.ijdrr.2021.102207.
  • Erdoğan, A., Görken, M., & Kabadayı, A. (2022). Study on the use of unmanned aerial vehicles in open mine sites: A case study of Ordu Province Mine Site. Advanced UAV, 2(2), 35-40.
  • Douglas, A., Langenderfer, A. M., & Johnson, C. (2024). Road Condition Monitoring Utilizing UAV Photogrammetry Aligned to Principal Curve of Mine Haul Truck Path. Mining, Metallurgy & Exploration, 41, 61-72. https://doi.org/10.1007/s42461-023-00877-0
  • Polat, N., & Akça, Ş. (2023). Assessing road roughness using UAV-derived dense point clouds. Mersin Photogrammetry Journal, 5(2), 75-81. https://doi.org/10.53093/mephoj.1358902
  • Aykut, N. O. (2019). İnsansız hava araçlarının kıyı çizgisinin belirlenmesinde kullanılabilirliğinin araştırılması. Geomatik, 4(2), 141-146. https://doi.org/10.29128/geomatik.503055
  • Budiharto, W., Irwansyah, E., Suroso, J. S., Chowanda, A., Ngarianto, H., & Gunawan, A. A. S. (2021). Mapping and 3D modelling using quadrotor drone and GIS software. Journal of Big Data, 8(1), 1-12. https://doi.org/10.1186/s40537-021-00436-8
  • Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2), 97–107.https://doi.org/10.1007/s12145-013-0142-2
  • Lovitt, J., Rahman, M. M., & McDermid, G. J. (2017). Assessing the value of UAV photogrammetry for characterizing terrain in complex peatlands. Remote Sensing, 9(7), 715. https://doi.org/10.3390/rs9070715
  • Pathak, S., Acharya, S., Bk, S., Karn, G., Thapa, U. (2024). UAV-based topographical mapping and accuracy assessment of orthophoto using GCP. Mersin Photogrammetry Journal, 6(1), 1-8. https://doi.org/10.53093/mephoj.1350426
  • Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2010). Close range photogrammetry and robotic total station in volume calculation. International Journal of the Physical Sciences. 5(2), 086-096
  • Türk, T., Tunalioglu, N., Erdogan, B., Ocalan, T., & Gurturk, M. (2022). Accuracy assessment of UAV-post-processing kinematic (PPK) and UAV-traditional (with ground control points) georeferencing methods. Environmental Monitoring and Assessment, 194, 476. https://doi.org/10.1007/s10661-022-10170-0
  • Jiménez-Jiménez, S. I., Ojeda-Bustamante, W., Marcial-Pablo, M. D. J., & Enciso, J. (2021). Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS International Journal of Geo-Information, 10(5), 285. https://doi.org/10.3390/ijgi10050285
  • Mesas-Carrascosa, F. J., García, M. D. N., De Larriva, J. E. M., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1-12. https://doi.org/10.3390/s16111838
  • Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R., & Ordóñez, C. (2018). Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing, 10(10), 1-19. https://doi.org/10.3390/rs10101606
  • Akay, S. S., Ozcan, O., Şanlı, F. B., Bayram, B., & Gorum, T. (2021). Assessing the spatial accuracy of UAV-derived products based on variation of flight altitudes. Turkish Journal of Engineering, 5(1), 35-40.
  • Deliry, S. I., & Avdan, U. (2024). Accuracy assessment of UAS photogrammetry and structure from motion in surveying and mapping. International Journal of Engineering and Geosciences, 9(2), 165-190. https://doi.org/10.26833/ijeg.1366146
  • Barba, S., Barbarella, M., Di Benedetto, A., Fiani, M., Gujski, L., & Limongiello, M. (2019). Accuracy assessment of 3d photogrammetric models from an unmanned aerial vehicle. Drones, 3(4), 1–19. https://doi.org/10.3390/drones3040079
  • Chaudhry, M. H., Ahmad, A., & Gulzar, Q. (2020). Impact of uav surveying parameters on mixed urban landuse surface modelling. ISPRS International Journal of Geo-Information, 9(11), 1-17. https://doi.org/10.3390/ijgi9110656
  • Rangel, J. M. G., Gonçalves, G. R., & Pérez, J. A. (2018). The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. International Journal of Remote Sensing, 39(21), 7154–7171. https://doi.org/10.1080/01431161.2018.1515508
  • Dharshan Shylesh, D. S., Manikandan, N., Sivasankar, S., Surendran, D., Jaganathan, R., & Mohan, G. (2023). Influence of quantity, quality, horizontal and vertical distribution of ground control points on the positional accuracy of UAV survey. Applied Geomatics, 15(4), 897–917. https://doi.org/10.1007/s12518-023-00531-w
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.
  • Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221-227. https://doi.org/10.1016/j.measurement.2016.12.002.
  • Taddia, Y., González-García, L., Zambello, E., & Pellegrinelli, A. (2020). Quality assessment of photogrammetric models for façade and building reconstruction using dji phantom 4 rtk. Remote Sensing, 12(19), 1–32. https://doi.org/10.3390/rs12193144
  • Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alexandria Engineering Journal, 60(6), 5579–5590. https://doi.org/10.1016/j.aej.2021.04.011
  • Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., & Martínez-Carricondo, P. (2020). UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sensing, 12(15), 1-19. https://doi.org/10.3390/rs12152447
  • Liu, X., Lian, X., Yang, W., Wang, F., Han, Y., & Zhang, Y. (2022). Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones, 6(2), 1-15. https://doi.org/10.3390/drones6020030
  • Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F. J., García-Ferrer, A., & Pérez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1–10. https://doi.org/10.1016/j.jag.2018.05.015
  • Zhang, Y., Zhang, C., Chen, S., & Chen, X. (2021). Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model. Remote Sensing, 13(19), 3801. https://doi.org/10.3390/rs13193801
  • Jeon, E. I., Yu, S. J., Seok, H. W., Kang, S. J., Lee, K. Y., & Kwon, O. S. (2017). Comparative evaluation of commercial softwares in UAV imagery for cultural heritage recording: case study for traditional building in South Korea. Spatial Information Research, 25(5), 701–712. https://doi.org/10.1007/s41324-017-0137-z
  • Yilmaz, H. M. & Yakar, M. (2008). Computing Of Volume Of Excavation Areas By Digıtal Close Range Photogrammetry. Arabian J. Sci. Eng. 33(1A), 63-784
There are 45 citations in total.

Details

Primary Language English
Subjects Photogrametry
Journal Section Research Article
Authors

Hasan Dilmaç 0000-0001-6877-8730

Veli İlçi 0000-0002-9485-874X

Nazime Tilbe Şaşmaz 0009-0002-5042-2837

İbrahim Murat Ozulu 0000-0002-0963-3600

Early Pub Date January 24, 2025
Publication Date
Submission Date August 19, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Dilmaç, H., İlçi, V., Şaşmaz, N. T., Ozulu, İ. M. (2025). The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. International Journal of Engineering and Geosciences, 10(2), 164-172. https://doi.org/10.26833/ijeg.1535675
AMA Dilmaç H, İlçi V, Şaşmaz NT, Ozulu İM. The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. IJEG. January 2025;10(2):164-172. doi:10.26833/ijeg.1535675
Chicago Dilmaç, Hasan, Veli İlçi, Nazime Tilbe Şaşmaz, and İbrahim Murat Ozulu. “The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy”. International Journal of Engineering and Geosciences 10, no. 2 (January 2025): 164-72. https://doi.org/10.26833/ijeg.1535675.
EndNote Dilmaç H, İlçi V, Şaşmaz NT, Ozulu İM (January 1, 2025) The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. International Journal of Engineering and Geosciences 10 2 164–172.
IEEE H. Dilmaç, V. İlçi, N. T. Şaşmaz, and İ. M. Ozulu, “The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy”, IJEG, vol. 10, no. 2, pp. 164–172, 2025, doi: 10.26833/ijeg.1535675.
ISNAD Dilmaç, Hasan et al. “The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy”. International Journal of Engineering and Geosciences 10/2 (January 2025), 164-172. https://doi.org/10.26833/ijeg.1535675.
JAMA Dilmaç H, İlçi V, Şaşmaz NT, Ozulu İM. The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. IJEG. 2025;10:164–172.
MLA Dilmaç, Hasan et al. “The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy”. International Journal of Engineering and Geosciences, vol. 10, no. 2, 2025, pp. 164-72, doi:10.26833/ijeg.1535675.
Vancouver Dilmaç H, İlçi V, Şaşmaz NT, Ozulu İM. The Effect of Ground Control Points Located on Roofs on Building Facade Accuracy. IJEG. 2025;10(2):164-72.