Research Article
BibTex RIS Cite

GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan

Year 2025, Volume: 10 Issue: 2, 231 - 243
https://doi.org/10.26833/ijeg.1567019

Abstract

This study investigates the impact of sedimentation on the storage capacity of the Tupalang Reservoir, located in Surkhandarya, Uzbekistan, over a period of more than 30 years. Sedimentation poses a significant challenge by gradually reducing reservoir capacity, affecting water availability for irrigation, hydropower, and drinking supply. In the study, sedimentation was evaluated using GIS-based geostatistical methods using USV data in the reservoir. For the bathymetric data processing that was collected in 2023, four interpolation techniques—IDW, RBF, OK, and EBK —were applied, with RBF demonstrating the highest predictive accuracy. Results indicate a capacity loss of 28.05 million cubic meters (Mm³), or 5.65% of the total volume, primarily in the dead storage zone between 830 m and 890 m above sea level. Using bathymetric surveys conducted in 2003, 2007, 2010, and 2023, this research assesses changes in reservoir volume and identifies sedimentation patterns. The findings highlight a decline in sedimentation rates from 1.51 Mm³ per year in the early years to 0.3 Mm³ per year after 2010, attributed to effective management practices such as hydraulic washing. The study underscores the importance of proactive sediment management strategies, including dredging and sediment traps, to sustain reservoir functionality and recommends ongoing monitoring using advanced geospatial techniques

Supporting Institution

National Research University "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers institute"

Thanks

We are pleased to submit our manuscript titled "Geospatial Techniques for Evaluating Sedimentation and Storage Capacity in the Topalang Reservoir, Uzbekistan" for consideration in the International Journal of Engineering and Geosciences. We appreciate your time and effort in reviewing our work and look forward to your feedback. Thank you for considering our submission.

References

  • Otorbaev, D. (2022). Central Asia’s Economic Rebirth in the Shadow of the New Great Game. London: Routledge. https://doi.org/10.4324/9781003360728
  • Abdullaev, I., & Akhmedov, S. (2022). Financing Infrastructure in Central Asia. In Unlocking Private Investment in Sustainable Infrastructure in Asia (pp. 72–88). London: Routledge. https://doi.org/10.4324/9781003228790-7
  • Yalçin, R., & Imagambetova, A. (2022). Problems of sharing transboundary water resources in Central Asia. Akademik Yaklaşımlar Dergisi, 13(2), 546–566. https://doi.org/10.54688/ayd.1111305
  • Tagbayev, A. (2022). Economic Activities and Traditional Activities of the Peoples of Central Asia are Highlighted in the Works of B.Kh. Karmisheva. International Journal of Social Science And Human Research, 05(10), 4770–4774. https://doi.org/10.47191/ijsshr/v5-i10-50
  • Şen, Z. (2021). Reservoirs for Water Supply Under Climate Change Impact—A Review. Water Resources Management, 35(11), 3827–3843. https://doi.org/10.1007/s11269-021-02925-0
  • Bakiev M, & Khasanov Kh. (2023). Determination of the capacity of the Kalkaman mudflow reservoir using geostatistical analysis. Irrigatsiya va Melioratsiya, 3(33), 18–26 (Russian).
  • Khasanov, K. (2024). A comprehensive analysis of reservoir capacity loss: a case study of the Akhangaran Reservoir, Uzbekistan. Water Cycle. https://doi.org/10.1016/j.watcyc.2024.11.003
  • Rakhmatullaev, S., Huneau, F., Le Coustumer, P., Motelica-Heino, M., & Bakiev, M. (2010). Facts and Perspectives of Water Reservoirs in Central Asia: A Special Focus on Uzbekistan. Water, 2(2), 307–320. https://doi.org/10.3390/w2020307
  • Wenhong, C. (2022). Sustainable sediment management for sustainable use of reservoirs. River, 1(2), 121–122. https://doi.org/10.1002/rvr2.26
  • Shaukat, N., Hashmi, A., Abid, M., Aslam, M. N., Hassan, S., Sarwar, M. K., … Tariq, M. A. U. R. (2022). Sediment load forecasting of Gobindsagar reservoir using machine learning techniques. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1047290
  • Bednar, M., & Marton, D. (2022). Reservoir sedimentation effect on water supply under conditions of climate change (pp. 181–190). https://doi.org/10.5593/sgem2022V/3.2/s12.21
  • Gonzalez Rodriguez, L., McCallum, A., Kent, D., Rathnayaka, C., & Fairweather, H. (2023). A review of sedimentation rates in freshwater reservoirs: recent changes and causative factors. Aquatic Sciences, 85(2), 60. https://doi.org/10.1007/s00027-023-00960-0
  • Sedláček, J., Bábek, O., Grygar, T. M., Lenďáková, Z., Pacina, J., Štojdl, J., … Elznicová, J. (2022). A closer look at sedimentation processes in two dam reservoirs. Journal of Hydrology, 605, 127397. https://doi.org/10.1016/j.jhydrol.2021.127397
  • Singh, R., L. Tiwari, H., & Singh, K. (2023). A GIS-Based Analysis for Reservoir Sedimentation. International Journal of Science and Research (IJSR), 12(10), 1057–1059. https://doi.org/10.21275/SR231013143411
  • Cimorelli, L., Covelli, C., De Vincenzo, A., Pianese, D., & Molino, B. (2021). Sedimentation in Reservoirs: Evaluation of Return Periods Related to Operational Failures of Water Supply Reservoirs with Monte Carlo Simulation. Journal of Water Resources Planning and Management, 147(1). https://doi.org/10.1061/(ASCE)WR.1943-5452.0001307
  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology, 79(3), 192–216. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.06.019
  • Li, Y., Zhao, G., Allen, G. H., & Gao, H. (2023). Diminishing storage returns of reservoir construction. Nature Communications, 14(1), 3203. https://doi.org/10.1038/s41467-023-38843-5
  • Zerihun, Y. T. (2023). A Study of the Sedimentation and Storage Capacity Depletion of a Reservoir. Slovak Journal of Civil Engineering, 31(2), 37–47. https://doi.org/10.2478/sjce-2023-0011
  • Mekonnen, Y. A., Mengistu, T. D., Asitatikie, A. N., & Kumilachew, Y. W. (2022). Evaluation of reservoir sedimentation using bathymetry survey: a case study on Adebra night storage reservoir, Ethiopia. Applied Water Science, 12(12), 269. https://doi.org/10.1007/s13201-022-01787-0
  • Rakhmatullaev, S., Marache, A., Huneau, F., Le Coustumer, P., Bakiev, M., & Motelica-Heino, M. (2011). Geostatistical approach for the assessment of the water reservoir capacity in arid regions: a case study of the Akdarya reservoir, Uzbekistan. Environmental Earth Sciences, 63(3), 447–460. https://doi.org/10.1007/s12665-010-0711-3
  • Bist, M. S., Sonavane, A., Singh, A., Singh, J. K., & Selva Balan, M. (2023). A Capacity Loss and Silt Assessment of Khuga Reservoir, Manipur, Using Bathymetry Survey Technique—A Case Study’ (pp. 431–438). https://doi.org/10.1007/978-981-19-9151-6_35
  • Wróbel, M., Mańk, K., Gawryś, R., Kaniewska, A. K., Boczoń, A., & Grajewski, S. (2023). The use of low-cost bathymetric methods for the purpose of exploiting mid-forest water reservoirs. International Journal of Hydrology Science and Technology, 16(1), 82–92. https://doi.org/10.1504/IJHST.2023.131835
  • Sichingabula, H., Chisola, M., Muchanga, M., Sikazwe, H., Chomba, I., & Phiri, W. (2022). Kaleya river catchment regional estimation of reservoir capacities using sonar and GIS approaches. Journal of Natural and Applied Sciences, 6(1), 1–13. https://doi.org/10.53974/unza.jonas.6.1.391
  • lhan Sercan, & Umut Aydar. (2023). Flood Analysis of Çan (Kocabaş) Stream With UAV Images. Advanced UAV, 3(1), 25–34.
  • Khasanov, K., & Ahmedov, A. (2021). Comparison of Digital Elevation Models for the designing water reservoirs: A case study Pskom water reservoir. In E3S Web of Conferences (Vol. 264). https://doi.org/10.1051/e3sconf/202126403058
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface.Experimental Techniques, 34, 23-29. https://doi.org/10.1111/j.1747-1567.2009.00553.x.
  • Maraş, E. E., & Karafazlı, K. N. (n.d.). Monitoring coastal erosion and sediment accumulation in the Kızılırmak Delta using UAVs and photogrammetry. Advanced UAV, 2024(1), 42–52. http://publish.mersin.edu.tr/index.php/uav
  • Aghayev, A. (2018). Determining of different inundated land use in Salyan plain during 2010 the Kura River flood through GIS and remote sensing tools. International Journal of Engineering and Geosciences, 3(3), 80–86. https://doi.org/10.26833/ijeg.412348
  • Yağmur, N., Tanik, A., Tuzcu, A., Musaoğlu, N., Erten, E., & Bilgilioglu, B. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120–129. https://doi.org/10.26833/ijeg.638669
  • Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, & Peter Bauer-Gottwein. (2017). Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle, Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018
  • Mujta, W., Wlodarczyk-Sielicka, M., & Stateczny, A. (2023). Testing the Effect of Bathymetric Data Reduction on the Shape of the Digital Bottom Model. Sensors, 23(12), 5445. https://doi.org/10.3390/s23125445
  • Parente, C., & Vallario, A. (2019). Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. International Journal of Advanced Computer Science and Applications, 10(10). https://doi.org/10.14569/IJACSA.2019.0101002
  • Shelke, S., Balan, S., & Kumar, C. (2016). Analysis of bathymetry data for calculating volume of water in a reservoir. In 2016 Conference on Advances in Signal Processing (CASP) (pp. 83–87). IEEE. https://doi.org/10.1109/CASP.2016.7746142
  • Vathar, S., & Shelke, S. (2016). Bathymetry data analysis and depth measurement. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET) (pp. 1–5). IEEE. https://doi.org/10.1109/GET.2016.7916649
  • Akar, A. (2017). Evaluation of accuracy of DEMs obtained from UAV-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110–117. https://doi.org/10.26833/ijeg.329717
  • Hastaoğlu, K. Ö., Göğsu, S., & Gül, Y. (2022). Determining the relationship between the slope and directional distribution of the UAV point cloud and the accuracy of various IDW interpolation. International Journal of Engineering and Geosciences, 7(2), 161–173. https://doi.org/10.26833/ijeg.940997
  • Tobler W, On the First Law of Geography: A Reply. Annals of the Association of American Geographers, 94(2), 304–310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x
  • Loeffler, C. F., Lara, L. de O. C., & Ourique, F. R. (2022). Performance of spatial derivatives using interpolation with radial basis functions. STUDIES IN ENGINEERING AND EXACT SCIENCES, 3(4), 777–798. https://doi.org/10.54021/seesv3n4-014
  • Kamińska A., & Grzywna A. (2014). Comparison of deteministic interpolation methods for the estimation of groundwater level. Journal of Ecological Engineering, 15(4), 55–60. 10.12911/22998993.1125458
  • Bishop C. M., Neural networks for pattern recognition. Oxford university press, 1995. 10.1093/oso/9780198538493.001.0001
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.
  • Seddiki, A., & Dehimi, S. (2023). Effect of choosing a variogram model to predict salinity and its impact on the environment and geotechnical structures. Technium Social Sciences Journal, 39, 860–872. https://doi.org/10.47577/tssj.v39i1.8314
  • Zhang, Y., Pichon, L., Taylor, J. A., Oger, B., & Tisseyre, B. (2023). 82. Introducing Bayesian priors to semi-variogram parameter estimation using fewer observations. In Precision agriculture ’23 (pp. 651–658). The Netherlands: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-947-3_82
  • Gribov, A., & Krivoruchko, K. (2020). Empirical Bayesian kriging implementation and usage. Science of The Total Environment, 722, 137290. https://doi.org/10.1016/j.scitotenv.2020.137290
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69
  • Michael W. Mahoney, L. Johnson, Julia Silge, Hannah Frick, Max Kuhn, & Colin M. Beier. (2023). Assessing the performance of spatial cross-validation approaches for models of spatially structured data. https://doi.org/10.48550/arXiv.2303.07334
  • Yilmaz, A., & Erdoğan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98–107. https://doi.org/10.26833/ijeg.384822
  • Michael, S. (2010). A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis. Georg-August-University Göttingen. https://doi.org/10.53846/goediss-2461
  • Karwariya, S., Dey, P., Bhogal, N. S., Kanga, S., & Singh, S. K. (2021). A Comparative Study of Interpolation Methods for Mapping Soil Properties: A Case Study of Eastern Part of Madhya Pradesh, India (pp. 431–449). https://doi.org/10.1007/978-3-030-76116-5_22
  • Castel, S., & S. Burr, W. (2021). Assessing Statistical Performance of Time Series Interpolators. In The 7th International conference on Time Series and Forecasting (p. 57). Basel Switzerland: MDPI. https://doi.org/10.3390/engproc2021005057
  • Ayana, E. K., Philpot, W. D., Melesse, A. M., & Steenhuis, T. S. (2014). Bathymetry, Lake Area and Volume Mapping: A Remote-Sensing Perspective. In Nile River Basin (pp. 253–267). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-02720-3_14
  • Nagle, D.D., Campbell, B.G, and Lowery, M.A., (2009) Bathymetry of Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2008 (ver. 1.1, March 2015): U.S. Geological Survey Scientific Investigations Map 3076. https://dx.doi.org/10.3133/sim3076
  • Dourado, G. F., Hestir, E. L., & Viers, J. H. (2022). Establishing Reservoir Surface Area-Storage Capacity Relationship Using Landsat Imagery. In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 863–866). https://doi.org/10.1109/IGARSS46834.2022.9884132
  • Francis, O. I., Anornu, G. K., Adjei, K. A., & Martin, E. O. (2021). Development of water surface area–storage capacity relationship using empirical model for Gurara reservoir, Nigeria. Modeling Earth Systems and Environment, 7(3), 2047–2058
Year 2025, Volume: 10 Issue: 2, 231 - 243
https://doi.org/10.26833/ijeg.1567019

Abstract

References

  • Otorbaev, D. (2022). Central Asia’s Economic Rebirth in the Shadow of the New Great Game. London: Routledge. https://doi.org/10.4324/9781003360728
  • Abdullaev, I., & Akhmedov, S. (2022). Financing Infrastructure in Central Asia. In Unlocking Private Investment in Sustainable Infrastructure in Asia (pp. 72–88). London: Routledge. https://doi.org/10.4324/9781003228790-7
  • Yalçin, R., & Imagambetova, A. (2022). Problems of sharing transboundary water resources in Central Asia. Akademik Yaklaşımlar Dergisi, 13(2), 546–566. https://doi.org/10.54688/ayd.1111305
  • Tagbayev, A. (2022). Economic Activities and Traditional Activities of the Peoples of Central Asia are Highlighted in the Works of B.Kh. Karmisheva. International Journal of Social Science And Human Research, 05(10), 4770–4774. https://doi.org/10.47191/ijsshr/v5-i10-50
  • Şen, Z. (2021). Reservoirs for Water Supply Under Climate Change Impact—A Review. Water Resources Management, 35(11), 3827–3843. https://doi.org/10.1007/s11269-021-02925-0
  • Bakiev M, & Khasanov Kh. (2023). Determination of the capacity of the Kalkaman mudflow reservoir using geostatistical analysis. Irrigatsiya va Melioratsiya, 3(33), 18–26 (Russian).
  • Khasanov, K. (2024). A comprehensive analysis of reservoir capacity loss: a case study of the Akhangaran Reservoir, Uzbekistan. Water Cycle. https://doi.org/10.1016/j.watcyc.2024.11.003
  • Rakhmatullaev, S., Huneau, F., Le Coustumer, P., Motelica-Heino, M., & Bakiev, M. (2010). Facts and Perspectives of Water Reservoirs in Central Asia: A Special Focus on Uzbekistan. Water, 2(2), 307–320. https://doi.org/10.3390/w2020307
  • Wenhong, C. (2022). Sustainable sediment management for sustainable use of reservoirs. River, 1(2), 121–122. https://doi.org/10.1002/rvr2.26
  • Shaukat, N., Hashmi, A., Abid, M., Aslam, M. N., Hassan, S., Sarwar, M. K., … Tariq, M. A. U. R. (2022). Sediment load forecasting of Gobindsagar reservoir using machine learning techniques. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1047290
  • Bednar, M., & Marton, D. (2022). Reservoir sedimentation effect on water supply under conditions of climate change (pp. 181–190). https://doi.org/10.5593/sgem2022V/3.2/s12.21
  • Gonzalez Rodriguez, L., McCallum, A., Kent, D., Rathnayaka, C., & Fairweather, H. (2023). A review of sedimentation rates in freshwater reservoirs: recent changes and causative factors. Aquatic Sciences, 85(2), 60. https://doi.org/10.1007/s00027-023-00960-0
  • Sedláček, J., Bábek, O., Grygar, T. M., Lenďáková, Z., Pacina, J., Štojdl, J., … Elznicová, J. (2022). A closer look at sedimentation processes in two dam reservoirs. Journal of Hydrology, 605, 127397. https://doi.org/10.1016/j.jhydrol.2021.127397
  • Singh, R., L. Tiwari, H., & Singh, K. (2023). A GIS-Based Analysis for Reservoir Sedimentation. International Journal of Science and Research (IJSR), 12(10), 1057–1059. https://doi.org/10.21275/SR231013143411
  • Cimorelli, L., Covelli, C., De Vincenzo, A., Pianese, D., & Molino, B. (2021). Sedimentation in Reservoirs: Evaluation of Return Periods Related to Operational Failures of Water Supply Reservoirs with Monte Carlo Simulation. Journal of Water Resources Planning and Management, 147(1). https://doi.org/10.1061/(ASCE)WR.1943-5452.0001307
  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology, 79(3), 192–216. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.06.019
  • Li, Y., Zhao, G., Allen, G. H., & Gao, H. (2023). Diminishing storage returns of reservoir construction. Nature Communications, 14(1), 3203. https://doi.org/10.1038/s41467-023-38843-5
  • Zerihun, Y. T. (2023). A Study of the Sedimentation and Storage Capacity Depletion of a Reservoir. Slovak Journal of Civil Engineering, 31(2), 37–47. https://doi.org/10.2478/sjce-2023-0011
  • Mekonnen, Y. A., Mengistu, T. D., Asitatikie, A. N., & Kumilachew, Y. W. (2022). Evaluation of reservoir sedimentation using bathymetry survey: a case study on Adebra night storage reservoir, Ethiopia. Applied Water Science, 12(12), 269. https://doi.org/10.1007/s13201-022-01787-0
  • Rakhmatullaev, S., Marache, A., Huneau, F., Le Coustumer, P., Bakiev, M., & Motelica-Heino, M. (2011). Geostatistical approach for the assessment of the water reservoir capacity in arid regions: a case study of the Akdarya reservoir, Uzbekistan. Environmental Earth Sciences, 63(3), 447–460. https://doi.org/10.1007/s12665-010-0711-3
  • Bist, M. S., Sonavane, A., Singh, A., Singh, J. K., & Selva Balan, M. (2023). A Capacity Loss and Silt Assessment of Khuga Reservoir, Manipur, Using Bathymetry Survey Technique—A Case Study’ (pp. 431–438). https://doi.org/10.1007/978-981-19-9151-6_35
  • Wróbel, M., Mańk, K., Gawryś, R., Kaniewska, A. K., Boczoń, A., & Grajewski, S. (2023). The use of low-cost bathymetric methods for the purpose of exploiting mid-forest water reservoirs. International Journal of Hydrology Science and Technology, 16(1), 82–92. https://doi.org/10.1504/IJHST.2023.131835
  • Sichingabula, H., Chisola, M., Muchanga, M., Sikazwe, H., Chomba, I., & Phiri, W. (2022). Kaleya river catchment regional estimation of reservoir capacities using sonar and GIS approaches. Journal of Natural and Applied Sciences, 6(1), 1–13. https://doi.org/10.53974/unza.jonas.6.1.391
  • lhan Sercan, & Umut Aydar. (2023). Flood Analysis of Çan (Kocabaş) Stream With UAV Images. Advanced UAV, 3(1), 25–34.
  • Khasanov, K., & Ahmedov, A. (2021). Comparison of Digital Elevation Models for the designing water reservoirs: A case study Pskom water reservoir. In E3S Web of Conferences (Vol. 264). https://doi.org/10.1051/e3sconf/202126403058
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface.Experimental Techniques, 34, 23-29. https://doi.org/10.1111/j.1747-1567.2009.00553.x.
  • Maraş, E. E., & Karafazlı, K. N. (n.d.). Monitoring coastal erosion and sediment accumulation in the Kızılırmak Delta using UAVs and photogrammetry. Advanced UAV, 2024(1), 42–52. http://publish.mersin.edu.tr/index.php/uav
  • Aghayev, A. (2018). Determining of different inundated land use in Salyan plain during 2010 the Kura River flood through GIS and remote sensing tools. International Journal of Engineering and Geosciences, 3(3), 80–86. https://doi.org/10.26833/ijeg.412348
  • Yağmur, N., Tanik, A., Tuzcu, A., Musaoğlu, N., Erten, E., & Bilgilioglu, B. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120–129. https://doi.org/10.26833/ijeg.638669
  • Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, & Peter Bauer-Gottwein. (2017). Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle, Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018
  • Mujta, W., Wlodarczyk-Sielicka, M., & Stateczny, A. (2023). Testing the Effect of Bathymetric Data Reduction on the Shape of the Digital Bottom Model. Sensors, 23(12), 5445. https://doi.org/10.3390/s23125445
  • Parente, C., & Vallario, A. (2019). Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. International Journal of Advanced Computer Science and Applications, 10(10). https://doi.org/10.14569/IJACSA.2019.0101002
  • Shelke, S., Balan, S., & Kumar, C. (2016). Analysis of bathymetry data for calculating volume of water in a reservoir. In 2016 Conference on Advances in Signal Processing (CASP) (pp. 83–87). IEEE. https://doi.org/10.1109/CASP.2016.7746142
  • Vathar, S., & Shelke, S. (2016). Bathymetry data analysis and depth measurement. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET) (pp. 1–5). IEEE. https://doi.org/10.1109/GET.2016.7916649
  • Akar, A. (2017). Evaluation of accuracy of DEMs obtained from UAV-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110–117. https://doi.org/10.26833/ijeg.329717
  • Hastaoğlu, K. Ö., Göğsu, S., & Gül, Y. (2022). Determining the relationship between the slope and directional distribution of the UAV point cloud and the accuracy of various IDW interpolation. International Journal of Engineering and Geosciences, 7(2), 161–173. https://doi.org/10.26833/ijeg.940997
  • Tobler W, On the First Law of Geography: A Reply. Annals of the Association of American Geographers, 94(2), 304–310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x
  • Loeffler, C. F., Lara, L. de O. C., & Ourique, F. R. (2022). Performance of spatial derivatives using interpolation with radial basis functions. STUDIES IN ENGINEERING AND EXACT SCIENCES, 3(4), 777–798. https://doi.org/10.54021/seesv3n4-014
  • Kamińska A., & Grzywna A. (2014). Comparison of deteministic interpolation methods for the estimation of groundwater level. Journal of Ecological Engineering, 15(4), 55–60. 10.12911/22998993.1125458
  • Bishop C. M., Neural networks for pattern recognition. Oxford university press, 1995. 10.1093/oso/9780198538493.001.0001
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.
  • Seddiki, A., & Dehimi, S. (2023). Effect of choosing a variogram model to predict salinity and its impact on the environment and geotechnical structures. Technium Social Sciences Journal, 39, 860–872. https://doi.org/10.47577/tssj.v39i1.8314
  • Zhang, Y., Pichon, L., Taylor, J. A., Oger, B., & Tisseyre, B. (2023). 82. Introducing Bayesian priors to semi-variogram parameter estimation using fewer observations. In Precision agriculture ’23 (pp. 651–658). The Netherlands: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-947-3_82
  • Gribov, A., & Krivoruchko, K. (2020). Empirical Bayesian kriging implementation and usage. Science of The Total Environment, 722, 137290. https://doi.org/10.1016/j.scitotenv.2020.137290
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69
  • Michael W. Mahoney, L. Johnson, Julia Silge, Hannah Frick, Max Kuhn, & Colin M. Beier. (2023). Assessing the performance of spatial cross-validation approaches for models of spatially structured data. https://doi.org/10.48550/arXiv.2303.07334
  • Yilmaz, A., & Erdoğan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98–107. https://doi.org/10.26833/ijeg.384822
  • Michael, S. (2010). A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis. Georg-August-University Göttingen. https://doi.org/10.53846/goediss-2461
  • Karwariya, S., Dey, P., Bhogal, N. S., Kanga, S., & Singh, S. K. (2021). A Comparative Study of Interpolation Methods for Mapping Soil Properties: A Case Study of Eastern Part of Madhya Pradesh, India (pp. 431–449). https://doi.org/10.1007/978-3-030-76116-5_22
  • Castel, S., & S. Burr, W. (2021). Assessing Statistical Performance of Time Series Interpolators. In The 7th International conference on Time Series and Forecasting (p. 57). Basel Switzerland: MDPI. https://doi.org/10.3390/engproc2021005057
  • Ayana, E. K., Philpot, W. D., Melesse, A. M., & Steenhuis, T. S. (2014). Bathymetry, Lake Area and Volume Mapping: A Remote-Sensing Perspective. In Nile River Basin (pp. 253–267). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-02720-3_14
  • Nagle, D.D., Campbell, B.G, and Lowery, M.A., (2009) Bathymetry of Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2008 (ver. 1.1, March 2015): U.S. Geological Survey Scientific Investigations Map 3076. https://dx.doi.org/10.3133/sim3076
  • Dourado, G. F., Hestir, E. L., & Viers, J. H. (2022). Establishing Reservoir Surface Area-Storage Capacity Relationship Using Landsat Imagery. In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 863–866). https://doi.org/10.1109/IGARSS46834.2022.9884132
  • Francis, O. I., Anornu, G. K., Adjei, K. A., & Martin, E. O. (2021). Development of water surface area–storage capacity relationship using empirical model for Gurara reservoir, Nigeria. Modeling Earth Systems and Environment, 7(3), 2047–2058
There are 54 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Surveying (Incl. Hydrographic Surveying)
Journal Section Research Article
Authors

Khojiakbar Khasanov 0000-0002-9440-2902

Masharif Bakiev 0000-0002-8083-5379

Early Pub Date January 25, 2025
Publication Date
Submission Date October 14, 2024
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Khasanov, K., & Bakiev, M. (2025). GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan. International Journal of Engineering and Geosciences, 10(2), 231-243. https://doi.org/10.26833/ijeg.1567019
AMA Khasanov K, Bakiev M. GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan. IJEG. January 2025;10(2):231-243. doi:10.26833/ijeg.1567019
Chicago Khasanov, Khojiakbar, and Masharif Bakiev. “GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case Study Tuplang Reservoir, Uzbekistan”. International Journal of Engineering and Geosciences 10, no. 2 (January 2025): 231-43. https://doi.org/10.26833/ijeg.1567019.
EndNote Khasanov K, Bakiev M (January 1, 2025) GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan. International Journal of Engineering and Geosciences 10 2 231–243.
IEEE K. Khasanov and M. Bakiev, “GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan”, IJEG, vol. 10, no. 2, pp. 231–243, 2025, doi: 10.26833/ijeg.1567019.
ISNAD Khasanov, Khojiakbar - Bakiev, Masharif. “GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case Study Tuplang Reservoir, Uzbekistan”. International Journal of Engineering and Geosciences 10/2 (January 2025), 231-243. https://doi.org/10.26833/ijeg.1567019.
JAMA Khasanov K, Bakiev M. GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan. IJEG. 2025;10:231–243.
MLA Khasanov, Khojiakbar and Masharif Bakiev. “GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case Study Tuplang Reservoir, Uzbekistan”. International Journal of Engineering and Geosciences, vol. 10, no. 2, 2025, pp. 231-43, doi:10.26833/ijeg.1567019.
Vancouver Khasanov K, Bakiev M. GIS-Based Geostatistical Techniques for Sedimentation Assessment Using USV Data: Case study Tuplang Reservoir, Uzbekistan. IJEG. 2025;10(2):231-43.