Year 2025,
Volume: 10 Issue: 3, 428 - 439, 17.09.2025
Volkan Özbey
,
Bilal Mutlu
,
Serdar Erol
,
Mahmut Oğuz Selbesoğlu
,
Hasan Hakan Yavaşoğlu
,
Reha Metin Alkan
References
-
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017.
-
Héroux, P., & Kouba, J. (2001). GPS precise point positioning using IGS orbit products. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6–8), 573–578.
-
Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3–4), 191–198.
-
Rizos, C., Montenbruck, O., Weber, R., Weber, G., Neilan, R., & Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of the ION 2013 Pacific PNT Meeting, 289-295, Honolulu, Hawaii.
-
Montenbruck, O., Steigenberger, P., & Hauschild, A. (2018). Multi-GNSS signal-in-space range error assessment – Methodology and results. Advances in Space Research, 61(12), 3020–3038.
-
Öğütcü, S., Shakor, A., & Farhan, H. (2022). Investigating the effect of observation interval on GPS, GLONASS, Galileo and BeiDou static PPP. International Journal of Engineering and Geosciences, 7(3), 294-301.
-
Uçarlı, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS Uydu Sistemlerinin Hassas Nokta Konumlama (PPP) Tekniğinin Performansına Etkisinin İncelenmesi. Geomatik, 6(3), 247-258.
-
Zheng, K., Zhang, X., Li, P., Li, X., Ge, M., Guo, F., Sang, J., & Schuh, H. (2019). Multipath extraction and mitigation for high-rate multi-GNSS precise point positioning. Journal of Geodesy, 93, 2037–2051.
-
Zheng, K., Tan, L., Liu, K., Chen, M., & Zeng, X. (2023). Assessing the Performance of Multipath Mitigation for Multi-GNSS Precise Point Positioning Ambiguity Resolution. Remote Sensing, 15(17), 4137.
-
Bu, J., Yu, K., Qian, N., Zuo, X., & Chang, J. (2021). Performance assessment of positioning based on multi-frequency multi-GNSS observations: signal quality, PPP and baseline solution. IEEE Access, 9, 5845-5861.
-
Loyer, S., Perosanz, F., Mercier, F., Capdeville, H., & Marty, J. C. (2012). Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. Journal of Geodesy, 86, 991–1003.
-
Pan, L., Xiaohong, Z., & Fei, G. (2017). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91, 25–40.
-
Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, 92, 579–608.
-
Öğütçü, S. (2020). Performance analysis of ambiguity resolution on PPP and relative positioning techniques: consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93.
-
Bezcioğlu, M., Uçar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261.
-
Alkan, R. M., Erol, S., İlçi, V., & Ozulu, İ. M. (2020). Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement, 163, 107995.
-
Yiğit, C. O., El-Mowafy, A., Anil Dindar, A., Bezcioğlu, M., & Tiryakioğlu, I. (2021). Investigating performance of high-rate GNSS-PPP and PPP-AR for structural health monitoring: dynamic tests on shake table. Journal of Surveying Engineering, 147(1).
-
Vana, S., & Bisnath, S. (2023). Low-cost, triple-frequency, multi-GNSS PPP and MEMS IMU integration for continuous navigation in simulated urban environments. NAVIGATION: Journal of the Institute of Navigation, 70(2), navi.578.
-
Pan, L., Deng, M., & Chen, B. (2024). Real-time GNSS meteorology: a promising alternative using real-time PPP technique based on broadcast ephemerides and the open service of Galileo. GPS Solutions, 28(3), 113.
-
Alkan, R. M., Erol, S., & Mutlu, B. (2023). Applicability of real-time PPP technique in polar regions as an accurate and efficient real-time positioning system. Turkish Journal of Earth Sciences, 32(8), 1022–1040.
-
Erol, S., Alkan, R. M., & Mutlu, B. (2023). Assessment of multi-GNSS RT-PPP services for the Antarctic region. Arctic, 76(3), 357–369.
-
Bezcioğlu, M., Yigit, C. O., & El-Mowafy, A. (2019). Kinematic PPP-AR in Antarctic comparing methods for precise positioning. Sea Technology, 60(2), 20–23.
-
Alkan, R. M., Selbesoğlu, M. O., Yavaşoğlu, H. H., & Arkalı, M. (2024). Seamless precise kinematic positioning in the high-latitude environments: Case study in the Antarctic Region. Rudarsko-Geološko-Naftni Zbornik, 39(2), 31–43.
-
Dabove, P., Linty, N., & Dovis, F. (2020). Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes. Applied Geomatics, 12, 45-52.
-
Luo, X., Chen, Z., Gu, S., Yue, N., & Yue, T. (2023). Studying the fixing rate of GPS PPP ambiguity resolution under different geomagnetic storm intensities. Space Weather, 21(10), e2023SW003542.
-
Ghoddousi-Fard, R., & Lahaye, F. (2015). High latitude ionospheric disturbances: Characterization and effects on GNSS precise point positioning. Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN), 1-6, Prague, Czech Republic.
-
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., ... & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in space research, 66(3), 469-489.
-
Herring, T. A., King, R. W., & McClusky, S. C. (2010). Introduction to gamit/globk. Massachusetts Institute of Technology, Cambridge, Massachusetts.
-
Dach, R., & Arnold, D. (2025). Bernese GNSS Software Version 5.4 Tutorial. Astronomical Institute, University of Bern, Bern, Switzerland.
-
Takasu, T. (2010). Real-time PPP with RTKLIB and IGS real-time satellite orbit and clock. IGS Workshop 2010, Newcastle upon Tyne, England.
-
Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J., & Schuh, H. (2018). GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22(2), 33.
-
Bahadur, B., & Nohutcu, M. (2018). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), 113.
-
Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 91.
-
Xiao, G., Liu, G., Ou, J., Liu, G., Wang, S., & Guo, A. (2020). MG-APP: an open-source software for multi-GNSS precise point positioning and application analysis. GPS Solutions, 24(3), 66.
-
Chen, C., & Chang, G. (2021). PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations. GPS Solutions, 25(1), 18.
-
Zhao, C., Zhang, B., & Zhang, X. (2021). SUPREME: an open-source single-frequency uncombined precise point positioning software. GPS Solutions, 25(3), 86.
-
Glaner, M. F., & Weber, R. (2023). An open-source software package for precise point positioning: raPPPid. GPS Solutions, 27(4), 174.
-
McClusky, S., Hammond, A., Maj, R., Allgeyer, S., Harima, K., Yeo, M., … & Riddell, A. (2024). Precise point positioning with Ginan: Geoscience Australia’s open-source GNSS analysis centre software. Proceedings of the ION 2024 Pacific PNT Meeting, 248–280, Honolulu, Hawaii.
-
Pırtı, A., & Yazıcı, D. (2022). İnternet tabanlı GNSS yazılımlarının doğruluk açısından değerlendirilmesi. Geomatik, 7(2), 88-105.
-
Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41-51.
-
Li, X., Huang, J., Li, X., Shen, Z., Han, J., Li, L., & Wang, B. (2022). Review of PPP–RTK: Achievements, challenges, and opportunities. Satellite Navigation, 3(1), 28.
-
Di, M., Guo, B., Ren, J., Wu, X., Zhang, Z., Liu, Y., Liu, Q., & Zhang, A. (2022). GNSS Real–Time Precise Point Positioning in Arctic Northeast Passage. Journal of Marine Science and Engineering, 10(10), 1345.
-
Ebner, R., & Featherstone, W. (2008). How well can online GPS PPP post-processing services be used to establish geodetic survey control networks? Journal of Applied Geodesy, 2(3), 149-157.
-
Rizos, C., Janssen, V., Roberts, C., & Grinter, T. (2012). Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? FIG Working Week 2012: Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy.
-
Bio, A., Gonçalves, J.A., Magalhães, A., Pinheiro, J., & Bastos, L. (2022). Combining low-cost sonar and high-precision global navigation satellite system for shallow water bathymetry. Estuaries and Coasts, 45, 1000–1011.
-
Shi, Z., Lang, J., Liang, X., Zhou, Z., Guo, A., & Liu, L. (2021). Experimental study on improving the accuracy of marine gravimetry by combining moving-base gravimeters with GNSS antenna array. Earth Planets Space, 73, 174.
-
Alkan, R. M., Erol, S., & Mutlu, B. (2022). IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği. Yerbilimleri, 43(1), 76–95.
-
Katsigianni, G., Loyer, S., & Perosanz, F. (2019). PPP and PPP-AR Kinematic Post-Processed Performance of GPS-Only, Galileo-Only and Multi-GNSS. Remote Sensing, 11(21), 2477.
-
Shanghai Huace Navigation Technology (CHCNAV) Ltd. (2021). CHCNAV i90 Pro IMU-RTK receiver user guide. Shanghai, China.
-
Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., Fatkulin, R., ... & Ganeshan, A. S. (2015). GNSS satellite geometry and attitude models. Advances in Space Research, 56(6), 1015-1029.
-
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
-
Abidin, W. A. W. Z., Fujisaki, K. & Tateiba, M. (2008). Novel approach to determine the effects of MS environment using the portable GPS receiver with built-in antenna. American Journal of Applied Sciences, 5(8), 1079-1082.
-
Lau, L., & Mok, E. (1999). Improvement of GPS relative positioning accuracy by using SNR. Journal of surveying engineering, 125(4), 185-202.
-
Geng, J., Yang, S., & Guo, J. (2021). Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR. Satellite Navigation, 2(1), 17.
-
Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solutions, 23(3), 61.
-
Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. (2010). Integer ambiguity resolution in precise point positioning: method comparison. Journal of Geodesy, 84(9), 569–581.
-
Zhang, X., Zhang, Y., & Zhu, F. (2020). A method of improving ambiguity fixing rate for post-processing kinematic GNSS data. Satellite Navigation, 1(1), 20.
-
Karadeniz, B., Pehlivan, H., & Arı, B. (2023). Examination of the Performance of Precise Point Positioning Technique with Real-Time Products on Smartphones. Advanced Geomatics, 3(1), 33–39.
-
Karadeniz, B., Pehlivan, H., Altıntaş, A. F., & Usta, S. (2024). Comparison of Network-RTK and PPP Technique in terms of Position Accuracy. Advanced Geomatics, 4(1), 31–36.
-
Demez, B., & Ernst, F. B. (2024). Creating Climate Change Scenarios Using Geodesing Method: Pütürge District Example. Advanced Geomatics, 4(1), 01–08.
-
Balcı, D. (2022). Researching the use of infrastructure in land management. Advanced GIS, 2(1), 18–23.
Performance analysis of multi-GNSS PPP for accurate ship-borne positioning in Antarctic region
Year 2025,
Volume: 10 Issue: 3, 428 - 439, 17.09.2025
Volkan Özbey
,
Bilal Mutlu
,
Serdar Erol
,
Mahmut Oğuz Selbesoğlu
,
Hasan Hakan Yavaşoğlu
,
Reha Metin Alkan
Abstract
This study evaluates the performance of multi-constellation GNSS Precise Point Positioning (PPP) for offshore kinematic observations in the challenging environment of Antarctica using the data collected on a moving ship during the 6th Turkish Antarctic Expedition in 2022. The analysis involved two open-source PPP software solutions, PRIDE PPP-AR, and Ginan, which were used to process GNSS data from both GPS-only and multi-GNSS (GPS, GLONASS, Galileo, BeiDou) constellations. The results indicate that PRIDE PPP-AR generally provided better horizontal and vertical positional accuracy than Ginan software, achieving improvements of up to approximately 33% in height component root mean square error (RMSE) for both constellation solutions. While the mean value of horizontal position differences for PRIDE PPP-AR in multi-GNSS solution was 4 cm, while 5 cm for Ginan. The anticipated advantages of multi-GNSS over GPS-only solutions were not consistently observed for Ginan software in 2D position and height components. However, PRIDE PPP-AR demonstrated improved internal consistency with multi-GNSS solution, achieving an RMSE value of 5 cm for horizontal positioning compared to 6 cm for Ginan. The general results of the study reveal that the PPP technique, which does not require any reference station’s GNSS data, can achieve almost the same accuracy as the differential positioning technique. With this superiority, the PPP technique is an ideal positioning technique, especially in remote marine environments and polar regions, where geodetic infrastructure is inadequate and environmental conditions are difficult
References
-
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017.
-
Héroux, P., & Kouba, J. (2001). GPS precise point positioning using IGS orbit products. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6–8), 573–578.
-
Dow, J. M., Neilan, R. E., & Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3–4), 191–198.
-
Rizos, C., Montenbruck, O., Weber, R., Weber, G., Neilan, R., & Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of the ION 2013 Pacific PNT Meeting, 289-295, Honolulu, Hawaii.
-
Montenbruck, O., Steigenberger, P., & Hauschild, A. (2018). Multi-GNSS signal-in-space range error assessment – Methodology and results. Advances in Space Research, 61(12), 3020–3038.
-
Öğütcü, S., Shakor, A., & Farhan, H. (2022). Investigating the effect of observation interval on GPS, GLONASS, Galileo and BeiDou static PPP. International Journal of Engineering and Geosciences, 7(3), 294-301.
-
Uçarlı, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS Uydu Sistemlerinin Hassas Nokta Konumlama (PPP) Tekniğinin Performansına Etkisinin İncelenmesi. Geomatik, 6(3), 247-258.
-
Zheng, K., Zhang, X., Li, P., Li, X., Ge, M., Guo, F., Sang, J., & Schuh, H. (2019). Multipath extraction and mitigation for high-rate multi-GNSS precise point positioning. Journal of Geodesy, 93, 2037–2051.
-
Zheng, K., Tan, L., Liu, K., Chen, M., & Zeng, X. (2023). Assessing the Performance of Multipath Mitigation for Multi-GNSS Precise Point Positioning Ambiguity Resolution. Remote Sensing, 15(17), 4137.
-
Bu, J., Yu, K., Qian, N., Zuo, X., & Chang, J. (2021). Performance assessment of positioning based on multi-frequency multi-GNSS observations: signal quality, PPP and baseline solution. IEEE Access, 9, 5845-5861.
-
Loyer, S., Perosanz, F., Mercier, F., Capdeville, H., & Marty, J. C. (2012). Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. Journal of Geodesy, 86, 991–1003.
-
Pan, L., Xiaohong, Z., & Fei, G. (2017). Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91, 25–40.
-
Li, X., Li, X., Yuan, Y., Zhang, K., Zhang, X., & Wickert, J. (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, 92, 579–608.
-
Öğütçü, S. (2020). Performance analysis of ambiguity resolution on PPP and relative positioning techniques: consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93.
-
Bezcioğlu, M., Uçar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261.
-
Alkan, R. M., Erol, S., İlçi, V., & Ozulu, İ. M. (2020). Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement, 163, 107995.
-
Yiğit, C. O., El-Mowafy, A., Anil Dindar, A., Bezcioğlu, M., & Tiryakioğlu, I. (2021). Investigating performance of high-rate GNSS-PPP and PPP-AR for structural health monitoring: dynamic tests on shake table. Journal of Surveying Engineering, 147(1).
-
Vana, S., & Bisnath, S. (2023). Low-cost, triple-frequency, multi-GNSS PPP and MEMS IMU integration for continuous navigation in simulated urban environments. NAVIGATION: Journal of the Institute of Navigation, 70(2), navi.578.
-
Pan, L., Deng, M., & Chen, B. (2024). Real-time GNSS meteorology: a promising alternative using real-time PPP technique based on broadcast ephemerides and the open service of Galileo. GPS Solutions, 28(3), 113.
-
Alkan, R. M., Erol, S., & Mutlu, B. (2023). Applicability of real-time PPP technique in polar regions as an accurate and efficient real-time positioning system. Turkish Journal of Earth Sciences, 32(8), 1022–1040.
-
Erol, S., Alkan, R. M., & Mutlu, B. (2023). Assessment of multi-GNSS RT-PPP services for the Antarctic region. Arctic, 76(3), 357–369.
-
Bezcioğlu, M., Yigit, C. O., & El-Mowafy, A. (2019). Kinematic PPP-AR in Antarctic comparing methods for precise positioning. Sea Technology, 60(2), 20–23.
-
Alkan, R. M., Selbesoğlu, M. O., Yavaşoğlu, H. H., & Arkalı, M. (2024). Seamless precise kinematic positioning in the high-latitude environments: Case study in the Antarctic Region. Rudarsko-Geološko-Naftni Zbornik, 39(2), 31–43.
-
Dabove, P., Linty, N., & Dovis, F. (2020). Analysis of multi-constellation GNSS PPP solutions under phase scintillations at high latitudes. Applied Geomatics, 12, 45-52.
-
Luo, X., Chen, Z., Gu, S., Yue, N., & Yue, T. (2023). Studying the fixing rate of GPS PPP ambiguity resolution under different geomagnetic storm intensities. Space Weather, 21(10), e2023SW003542.
-
Ghoddousi-Fard, R., & Lahaye, F. (2015). High latitude ionospheric disturbances: Characterization and effects on GNSS precise point positioning. Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN), 1-6, Prague, Czech Republic.
-
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., ... & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in space research, 66(3), 469-489.
-
Herring, T. A., King, R. W., & McClusky, S. C. (2010). Introduction to gamit/globk. Massachusetts Institute of Technology, Cambridge, Massachusetts.
-
Dach, R., & Arnold, D. (2025). Bernese GNSS Software Version 5.4 Tutorial. Astronomical Institute, University of Bern, Bern, Switzerland.
-
Takasu, T. (2010). Real-time PPP with RTKLIB and IGS real-time satellite orbit and clock. IGS Workshop 2010, Newcastle upon Tyne, England.
-
Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J., & Schuh, H. (2018). GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22(2), 33.
-
Bahadur, B., & Nohutcu, M. (2018). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solutions, 22(4), 113.
-
Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 91.
-
Xiao, G., Liu, G., Ou, J., Liu, G., Wang, S., & Guo, A. (2020). MG-APP: an open-source software for multi-GNSS precise point positioning and application analysis. GPS Solutions, 24(3), 66.
-
Chen, C., & Chang, G. (2021). PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations. GPS Solutions, 25(1), 18.
-
Zhao, C., Zhang, B., & Zhang, X. (2021). SUPREME: an open-source single-frequency uncombined precise point positioning software. GPS Solutions, 25(3), 86.
-
Glaner, M. F., & Weber, R. (2023). An open-source software package for precise point positioning: raPPPid. GPS Solutions, 27(4), 174.
-
McClusky, S., Hammond, A., Maj, R., Allgeyer, S., Harima, K., Yeo, M., … & Riddell, A. (2024). Precise point positioning with Ginan: Geoscience Australia’s open-source GNSS analysis centre software. Proceedings of the ION 2024 Pacific PNT Meeting, 248–280, Honolulu, Hawaii.
-
Pırtı, A., & Yazıcı, D. (2022). İnternet tabanlı GNSS yazılımlarının doğruluk açısından değerlendirilmesi. Geomatik, 7(2), 88-105.
-
Özdemir, E. G. (2022). Bağıl ve mutlak (PPP) konum çözüm yaklaşımı sunan Web-Tabanlı çevrimiçi veri değerlendirme servislerinin farklı gözlem periyotlarındaki performanslarının araştırılması. Geomatik, 7(1), 41-51.
-
Li, X., Huang, J., Li, X., Shen, Z., Han, J., Li, L., & Wang, B. (2022). Review of PPP–RTK: Achievements, challenges, and opportunities. Satellite Navigation, 3(1), 28.
-
Di, M., Guo, B., Ren, J., Wu, X., Zhang, Z., Liu, Y., Liu, Q., & Zhang, A. (2022). GNSS Real–Time Precise Point Positioning in Arctic Northeast Passage. Journal of Marine Science and Engineering, 10(10), 1345.
-
Ebner, R., & Featherstone, W. (2008). How well can online GPS PPP post-processing services be used to establish geodetic survey control networks? Journal of Applied Geodesy, 2(3), 149-157.
-
Rizos, C., Janssen, V., Roberts, C., & Grinter, T. (2012). Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? FIG Working Week 2012: Knowing to manage the territory, protect the environment, evaluate the cultural heritage, Rome, Italy.
-
Bio, A., Gonçalves, J.A., Magalhães, A., Pinheiro, J., & Bastos, L. (2022). Combining low-cost sonar and high-precision global navigation satellite system for shallow water bathymetry. Estuaries and Coasts, 45, 1000–1011.
-
Shi, Z., Lang, J., Liang, X., Zhou, Z., Guo, A., & Liu, L. (2021). Experimental study on improving the accuracy of marine gravimetry by combining moving-base gravimeters with GNSS antenna array. Earth Planets Space, 73, 174.
-
Alkan, R. M., Erol, S., & Mutlu, B. (2022). IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği. Yerbilimleri, 43(1), 76–95.
-
Katsigianni, G., Loyer, S., & Perosanz, F. (2019). PPP and PPP-AR Kinematic Post-Processed Performance of GPS-Only, Galileo-Only and Multi-GNSS. Remote Sensing, 11(21), 2477.
-
Shanghai Huace Navigation Technology (CHCNAV) Ltd. (2021). CHCNAV i90 Pro IMU-RTK receiver user guide. Shanghai, China.
-
Montenbruck, O., Schmid, R., Mercier, F., Steigenberger, P., Noll, C., Fatkulin, R., ... & Ganeshan, A. S. (2015). GNSS satellite geometry and attitude models. Advances in Space Research, 56(6), 1015-1029.
-
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
-
Abidin, W. A. W. Z., Fujisaki, K. & Tateiba, M. (2008). Novel approach to determine the effects of MS environment using the portable GPS receiver with built-in antenna. American Journal of Applied Sciences, 5(8), 1079-1082.
-
Lau, L., & Mok, E. (1999). Improvement of GPS relative positioning accuracy by using SNR. Journal of surveying engineering, 125(4), 185-202.
-
Geng, J., Yang, S., & Guo, J. (2021). Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR. Satellite Navigation, 2(1), 17.
-
Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solutions, 23(3), 61.
-
Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. (2010). Integer ambiguity resolution in precise point positioning: method comparison. Journal of Geodesy, 84(9), 569–581.
-
Zhang, X., Zhang, Y., & Zhu, F. (2020). A method of improving ambiguity fixing rate for post-processing kinematic GNSS data. Satellite Navigation, 1(1), 20.
-
Karadeniz, B., Pehlivan, H., & Arı, B. (2023). Examination of the Performance of Precise Point Positioning Technique with Real-Time Products on Smartphones. Advanced Geomatics, 3(1), 33–39.
-
Karadeniz, B., Pehlivan, H., Altıntaş, A. F., & Usta, S. (2024). Comparison of Network-RTK and PPP Technique in terms of Position Accuracy. Advanced Geomatics, 4(1), 31–36.
-
Demez, B., & Ernst, F. B. (2024). Creating Climate Change Scenarios Using Geodesing Method: Pütürge District Example. Advanced Geomatics, 4(1), 01–08.
-
Balcı, D. (2022). Researching the use of infrastructure in land management. Advanced GIS, 2(1), 18–23.