Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 3, 290 - 302
https://doi.org/10.26833/ijeg.1579147

Abstract

References

  • Al Kalbani, K., & Rahman, A. A. (2021). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23.‏
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.‏‏
  • Hendriks, M. (2010). Introduction to physical hydrology. Oxford University Press, USA.‏‏
  • Anwer, H. A., & Hassan, A. (2025). Hydrological dynamics and road infrastructure resilience: A case study of river Nile state, Sudan. Journal of Geography and Cartography, 8(1), 8785.‏‏‏
  • Demirel, Y., & Türk, T. (2024). Assessment of the Location Accuracy of Points Obtained with A Low-Cost Lidar Scanning System and GNSS Method. Mersin Photogrammetry Journal, 6(2), 60-65.‏‏
  • Aylar, F., Gürgöze, S., Zeybek, H. İ., Uzun, A., & Şen, H. (2024). Diş Kayalıkları’nın (İmranlı, Sivas) insansız hava aracı (İHA) kullanılarak 3 boyutlu modelinin oluşturulması. Geomatik, 9(1), 69-85.‏‏
  • Ünyılmaz, C. N., Kulavuz, B., Bakırman, T., & Bayram, B. (2024). Deep Learning Based Panchromatic2RGB Image Generation from VHR Images. Mersin Photogrammetry Journal, 6(2), 87-92.‏‏
  • Anwer, H. A., & Hassan, A. (2024). Air Quality Dynamics in Sichuan Province: Sentinel-5P Data Insights (2019-2023). Annals of Civil and Environmental Engineering, 8(1), 057-062.‏‏
  • Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes: An International Journal, 22(18), 3802-3813.‏‏
  • Mohamed, T. (2024). The Prediction of Flood Monitoring for Image Satellite Using Artificial Neural Networks. Journal of Karary University for Engineering and Science.‏‏‏
  • Hwang, S. H., Ham, D. H., & Kim, J. H. (2012). A new measure for assessing the efficiency of hydrological data-driven forecasting models. Hydrological sciences journal, 57(7), 1257-1274.‏‏
  • Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. (2004). Stream hydrology: an introduction for ecologists. John Wiley and Sons.‏‏
  • Savenije, H. H. (2010). HESS Opinions" Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences, 14(12), 2681-2692.‏‏
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.‏‏
  • Hassan, A. (2024). Analyzing the results of erdas imagine 16.7. 0 and arcgis pro 3.0. 3 in the process of creating land cover maps using landsat 8 data. Journal of Karary University for Engineering and Science.‏‏
  • Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of hydrologic engineering, 7(4), 270-292.‏‏
  • Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research, 33(2), 309-319.‏‏
  • O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.‏‏
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172.‏‏
  • Elhag, A., & Hassan, A. (2024). Gis applications in land management: Enhancing flood risk assessment and village replanning. Journal of Karary University for Engineering and Science.‏‏‏
  • Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: principles and applications. John Wiley & Sons.‏‏
  • Patıl, M., Saha, A., Pıngale, S. M., Rathore, D. S., & Goyal, V. C. (2023). Identification of potential zones on the estimation of direct runoff and soil erosion for an ungauged watershed based on remote sensing and GIS techniques. International Journal of Engineering and Geosciences, 8(3), 224-238.
  • Partigöç, N. S., & Dinçer, C. (2024). The Multi–Disaster risk assessment: A-GIS based approach for Izmir City. International Journal of Engineering and Geosciences, 9(1), 61-76.‏‏
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.‏
  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing, 54(11), 1593-1600.‏
  • Tarboton, D. G., Bras, R. L., & Rodriguez‐Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological processes, 5(1), 81-100.‏
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.‏
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370. ‏ Elhag, A. R., & Eljack, I. H. (2016). Dam site selection using GIS techniques and remote sensing to minimize flash floods in east Nile locality (Soba Valley)-Khartoum State. International Journal of Engineering Science Invention, 5(12), 50-61.‏
  • Rahmati, O., Kalantari, Z., Samadi, M., Uuemaa, E., Moghaddam, D. D., Nalivan, O. A., ... & Tien Bui, D. (2019). GIS-based site selection for check dams in watersheds: considering geomorphometric and topo-hydrological factors. Sustainability, 11(20), 5639.‏
  • Njiru, F. M., & Siriba, D. N. (2018). Site Selection for an earth dam in mbeere north, Embu County—Kenya. Journal of Geoscience and Environment Protection, 6(7), 113-133.‏
  • Chezgi, J., Pourghasemi, H. R., Naghibi, S. A., Moradi, H. R., & Kheirkhah Zarkesh, M. (2016). Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province, Iran. Geocarto International, 31(6), 628-646.‏
  • Murugesan, B., Alemayehu, T. M., Gopalakrishnan, G., Chung, S. Y., Senapathi, V., Sekar, S., ... & Karthikeyan, S. (2022). Site selection of check dams using geospatial techniques in Debre Berhan region, Ethiopia—water management perspective. Environmental Science and Pollution Research, 29(48), 72312-72331.‏

Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors

Year 2025, Volume: 10 Issue: 3, 290 - 302
https://doi.org/10.26833/ijeg.1579147

Abstract

This study evaluates the suitability of dam site locations in the Al Dinder region of Sudan using a GIS-based approach and weighted overlay analysis. Five key criteria were assessed: Stream Order, Slope, Soil Type, Precipitation, and Land Cover. Each criterion was analyzed to determine its impact on selecting optimal sites for dam construction. The results reveal that fourth-order streams offer the highest suitability due to their larger flow capacity, covering 11.4% of the area, while first-order streams, accounting for 48.9%, are less suitable. Slope analysis shows that 99.52% of the region features gentle slopes (0-5°), which are ideal for dam construction. Soil type analysis identifies Gleysols as the most favorable for dam foundations, covering 86.1% of the area. Precipitation levels, particularly in areas receiving 1200-2200 mm of rainfall, are deemed highly suitable for dam operations. The study further reveals that 96% of the land cover consists of barren land, which is advantageous for construction due to minimal land-use conflicts. A detailed cross-sectional profile analysis of six proposed dam sites identified Dam 5 as the most suitable location, offering stable terrain, a consistent cross-section, and favorable hydrological conditions. Other sites, such as Dam 1 and Dam 6, show promise but require additional engineering modifications. The study’s findings contribute valuable insights into sustainable water resource management and infrastructure development in regions with similar environmental conditions. Key recommendations include further feasibility assessments, environmental impact analyses, and consideration of the social and economic benefits of dam construction.

References

  • Al Kalbani, K., & Rahman, A. A. (2021). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23.‏
  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.‏‏
  • Hendriks, M. (2010). Introduction to physical hydrology. Oxford University Press, USA.‏‏
  • Anwer, H. A., & Hassan, A. (2025). Hydrological dynamics and road infrastructure resilience: A case study of river Nile state, Sudan. Journal of Geography and Cartography, 8(1), 8785.‏‏‏
  • Demirel, Y., & Türk, T. (2024). Assessment of the Location Accuracy of Points Obtained with A Low-Cost Lidar Scanning System and GNSS Method. Mersin Photogrammetry Journal, 6(2), 60-65.‏‏
  • Aylar, F., Gürgöze, S., Zeybek, H. İ., Uzun, A., & Şen, H. (2024). Diş Kayalıkları’nın (İmranlı, Sivas) insansız hava aracı (İHA) kullanılarak 3 boyutlu modelinin oluşturulması. Geomatik, 9(1), 69-85.‏‏
  • Ünyılmaz, C. N., Kulavuz, B., Bakırman, T., & Bayram, B. (2024). Deep Learning Based Panchromatic2RGB Image Generation from VHR Images. Mersin Photogrammetry Journal, 6(2), 87-92.‏‏
  • Anwer, H. A., & Hassan, A. (2024). Air Quality Dynamics in Sichuan Province: Sentinel-5P Data Insights (2019-2023). Annals of Civil and Environmental Engineering, 8(1), 057-062.‏‏
  • Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes: An International Journal, 22(18), 3802-3813.‏‏
  • Mohamed, T. (2024). The Prediction of Flood Monitoring for Image Satellite Using Artificial Neural Networks. Journal of Karary University for Engineering and Science.‏‏‏
  • Hwang, S. H., Ham, D. H., & Kim, J. H. (2012). A new measure for assessing the efficiency of hydrological data-driven forecasting models. Hydrological sciences journal, 57(7), 1257-1274.‏‏
  • Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. (2004). Stream hydrology: an introduction for ecologists. John Wiley and Sons.‏‏
  • Savenije, H. H. (2010). HESS Opinions" Topography driven conceptual modelling (FLEX-Topo)". Hydrology and Earth System Sciences, 14(12), 2681-2692.‏‏
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.‏‏
  • Hassan, A. (2024). Analyzing the results of erdas imagine 16.7. 0 and arcgis pro 3.0. 3 in the process of creating land cover maps using landsat 8 data. Journal of Karary University for Engineering and Science.‏‏
  • Singh, V. P., & Woolhiser, D. A. (2002). Mathematical modeling of watershed hydrology. Journal of hydrologic engineering, 7(4), 270-292.‏‏
  • Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research, 33(2), 309-319.‏‏
  • O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.‏‏
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172.‏‏
  • Elhag, A., & Hassan, A. (2024). Gis applications in land management: Enhancing flood risk assessment and village replanning. Journal of Karary University for Engineering and Science.‏‏‏
  • Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: principles and applications. John Wiley & Sons.‏‏
  • Patıl, M., Saha, A., Pıngale, S. M., Rathore, D. S., & Goyal, V. C. (2023). Identification of potential zones on the estimation of direct runoff and soil erosion for an ungauged watershed based on remote sensing and GIS techniques. International Journal of Engineering and Geosciences, 8(3), 224-238.
  • Partigöç, N. S., & Dinçer, C. (2024). The Multi–Disaster risk assessment: A-GIS based approach for Izmir City. International Journal of Engineering and Geosciences, 9(1), 61-76.‏‏
  • Unel, F. B., Kusak, L., & Yakar, M. (2023). GeoValueIndex map of public property assets generating via Analytic Hierarchy Process and Geographic Information System for Mass Appraisal: GeoValueIndex. Aestimum, 82, 51-69.‏
  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing, 54(11), 1593-1600.‏
  • Tarboton, D. G., Bras, R. L., & Rodriguez‐Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological processes, 5(1), 81-100.‏
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920.‏
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370. ‏ Elhag, A. R., & Eljack, I. H. (2016). Dam site selection using GIS techniques and remote sensing to minimize flash floods in east Nile locality (Soba Valley)-Khartoum State. International Journal of Engineering Science Invention, 5(12), 50-61.‏
  • Rahmati, O., Kalantari, Z., Samadi, M., Uuemaa, E., Moghaddam, D. D., Nalivan, O. A., ... & Tien Bui, D. (2019). GIS-based site selection for check dams in watersheds: considering geomorphometric and topo-hydrological factors. Sustainability, 11(20), 5639.‏
  • Njiru, F. M., & Siriba, D. N. (2018). Site Selection for an earth dam in mbeere north, Embu County—Kenya. Journal of Geoscience and Environment Protection, 6(7), 113-133.‏
  • Chezgi, J., Pourghasemi, H. R., Naghibi, S. A., Moradi, H. R., & Kheirkhah Zarkesh, M. (2016). Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province, Iran. Geocarto International, 31(6), 628-646.‏
  • Murugesan, B., Alemayehu, T. M., Gopalakrishnan, G., Chung, S. Y., Senapathi, V., Sekar, S., ... & Karthikeyan, S. (2022). Site selection of check dams using geospatial techniques in Debre Berhan region, Ethiopia—water management perspective. Environmental Science and Pollution Research, 29(48), 72312-72331.‏
There are 32 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Hossam Aldeen Anwer 0009-0008-4128-9329

Early Pub Date January 26, 2025
Publication Date
Submission Date November 7, 2024
Acceptance Date January 21, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Anwer, H. A. (2025). Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. International Journal of Engineering and Geosciences, 10(3), 290-302. https://doi.org/10.26833/ijeg.1579147
AMA Anwer HA. Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. IJEG. January 2025;10(3):290-302. doi:10.26833/ijeg.1579147
Chicago Anwer, Hossam Aldeen. “Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors”. International Journal of Engineering and Geosciences 10, no. 3 (January 2025): 290-302. https://doi.org/10.26833/ijeg.1579147.
EndNote Anwer HA (January 1, 2025) Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. International Journal of Engineering and Geosciences 10 3 290–302.
IEEE H. A. Anwer, “Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors”, IJEG, vol. 10, no. 3, pp. 290–302, 2025, doi: 10.26833/ijeg.1579147.
ISNAD Anwer, Hossam Aldeen. “Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors”. International Journal of Engineering and Geosciences 10/3 (January 2025), 290-302. https://doi.org/10.26833/ijeg.1579147.
JAMA Anwer HA. Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. IJEG. 2025;10:290–302.
MLA Anwer, Hossam Aldeen. “Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors”. International Journal of Engineering and Geosciences, vol. 10, no. 3, 2025, pp. 290-02, doi:10.26833/ijeg.1579147.
Vancouver Anwer HA. Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. IJEG. 2025;10(3):290-302.