Research Article
BibTex RIS Cite

Year 2026, Volume: 11 Issue: 2, 263 - 273
https://doi.org/10.26833/ijeg.1662672

Abstract

References

  • Rahman, M. A., Ahmed, S., & Imam, M. O. (2020). Rational way of estimating liquefaction severity: an implication for Chattogram, the Port City of Bangladesh. Geotechnical and Geological Engineering, 38(2), 2359-2375. https://doi.org/10.1007/s10706-019-01134-2
  • Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction potential evaluation by deterministic and probabilistic approaches. Civil Engineering Journal, 8(7), 1459-1481. http://dx.doi.org/10.28991/CEJ-2022-08-07-010
  • Bilham, R., & England, P. (2001). Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature, 410(6830),806-809. https://doi.org/10.1038/35071 057
  • Hossain, M. B., Rahman, M. M., & Haque, M. R. (2021). Empirical correlation between shear wave velocity (Vs) and uncorrected standard penetration resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature Science and Technology, 3, 25-29. https://doi.org/10.36937/janset.2021.003.005
  • Mostazid, M. I., Mahabub, M., & Mahbur, M. (2019). Seismic Vulnerability Assessment of Existing RCC Buildings in Dinajpur City: A Case Study on Ward No 6. In 2rd International Conference on Planing, Architecture & Civil Engineering, 1-6.
  • Ministry of Disaster Management and Relief. (2015). Atlas: Seismic Risk Assessment in Bangladesh for Bogra, Dinajpur, Mymensingh, Rajshahi, Rangpur and Tangail City Corporation / Paurashava Areas, Bangladesh
  • Dawson, K. M., & Baise, L. G. (2005). Three-dimensional liquefaction potential analysis using geostatistical interpolation. Soil Dynamics and Earthquake Engineering, 25(5), 369-381. https://doi.org/10.1016/j.soildyn.2005.02.008
  • Rahman, M. M., Hossain, M. B., & Roknuzzaman, M. (2023). Effect of peak ground acceleration (PGA) on liquefaction behavior of subsoil: A case study of Dinajpur Sadar Upazila, Bangladesh. In AIP Conference Proceedings 2713(1). https://doi.org/10.1063/5.0129770
  • Kajihara, K., Mohan, P. R., Kiyota, T., & Konagai, K. (2016). Liquefaction-induced ground subsidence extracted from Digital Surface Models and its application to hazard map of Urayasu city, Japan. Japanese Geotechnical Society Special Publication, 2(22), 829-834. https://doi.org/10.3208/jgssp.TC203-02
  • Eraslan, S., Hatipoğlu, İ. K., Ocak, F., Işık, F., et al. (2024). Investigation of the relationship between collapsed buildings and ground in the February 6, 2023 Kahramanmaraş earthquake and earthquake collapse risk analysis. Geomatik, 9(2), 207-226. https://doi.org/10.29128/geomatik.1422639
  • Sayed, A., & Rahman, M. M. (2025). M5 Soft Computing Techniques for Assessment of Soil Liquefaction. Journal of Rehabilitation in Civil Engineering, 13(3), 199-214. https://doi.org/10.22075/jrce.2025.34669.2134
  • Satyam, D. N., & Rao, K. S. (2014). Liquefaction hazard assessment using SPT and VS for two cities in India. Indian Geotechnical Journal, 44, 468-479. https://doi.org/10.1007/s40098-014-0098-2
  • Demir, M., & Altaş, NT (2024). Determination of earthquake damage risk potential areas in Kars city based on GIS-based AHP analysis. Geomatik, 9(1), 123-140. https://doi.org/10.29128/geomatik.1375650
  • Rahman, M. Z., Siddiqua, S., & Kamal, A. M. (2015). Liquefaction hazard mapping by liquefaction potential index for Dhaka City, Bangladesh. Engineering geology, 188, 137-147. https://doi.org/10.1016/j.enggeo.2015.01.012
  • Hossain, M. B., & Rahman, M. M. (2025). Seismic microzonation and probability of ground failure assessment caused by liquefaction for Bogura District, Bangladesh. Journal of Rehabilitation in Civil Engineering, 13(2), 218-242. https://doi.org/10.22075/jrce.2024.34111.2086
  • Gautam, D., de Magistris, F. S., & Fabbrocino, G. (2017). Soil liquefaction in Kathmandu valley due to 25 April 2015 Gorkha, Nepal earthquake. Soil Dynamics and Earthquake Engineering, 97, 37-47. https://doi.org/10.1016/j.soildyn.2017.03.001
  • Tint, Z. L., Kyaw, N. M., & Kyaw, K. (2018). Development of soil distribution and liquefaction potential maps for downtown area in Yangon, Myanmar. Civil Engineering Journal, 4(3), 689-701. https://doi.org/10.28991/cej-0309108
  • Habib, W., Mahmood, S., Noor, S., Saleem, A., Siraj, M., & Ahmad, H. (2023). A post earthquake damage assessment using GIS in district Mirpur, Pakistan. Advanced GIS, 3(2), 53-58.
  • Onyıl, H. I. (2022). Geospatial intelligence (GeoINT) risk maps producing with geographic information systems (GIS) and creation of the 2D simulation model. Advanced GIS, 2(1), 01-07.
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244..
  • Civelekler, E. (2023). Using GIS for the allowable soil bearing capacity estimation according to the Terzaghi (1943) equation in Eskişehir city center, Türkiye. International Journal of Engineering and Geosciences, 8(3),310-317. https://doi.org/10.26833/ijeg.1212584
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences,7(3),302-313.
  • Rahman, M. M. (2025). GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. International Journal of Engineering and Geosciences, 10(3), 329-338. https://doi.org/10.26833/ijeg.1589939
  • Yakar, M., & Yılmaz, H. M. (2010). Close range photogrammetry and robotic total station in volume calculation..
  • Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59..
  • Topaloglu, R. H. (2022). Investigation of Land Use/Land Cover change in Mersin using geographical object-based image analysis (GEOBIA). Advanced Remote Sensing, 2(2), 40–46.
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
  • Kankanamge , H. P. N. K., & Mahmood, S. (2024). Post-Flood Disaster Management Challenges and Issues in the Bulathsinghala Divisional Secretariat Division, Sri Lanka: A Comprehensive Analysis and Strategic Framework for Resilience and Recovery. Advanced Geomatics, 4(1), 09–16.
  • Manizabayo, P., Ngwijabagabo , H., Nzayisenga , I., Nzamwita , S., Amani , L., Uwitonze , E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case study of Mpazi sub-catchment in the city of Kigali. Advanced GIS, 4(1), 31–41.
  • Oğuz, E., Oğuz, K., & Öztürk, K. (2022). Determination of flood susceptibility areas in Düzce region. Geomatik, 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Bijaber, N., Rochdi, A., Yessef, M., El Yacoubi, H. (2024). Mapping the structural vulnerability to drought in Morocco. International Journal of Engineering and Geosciences, 9(2), 264-280. https://doi.org/10.26833/ijeg.1404507
  • Rahman, M. Z., Kamal, A. M., & Siddiqua, S. (2018). Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh. Natural Hazards, 92, 1687-1715. https://doi.org/10.1007/s11069-018-3266-3
  • Kayal, J. R., Arefiev, S. S., Baruah, S., Hazarika, D., Gogoi, N., Gautam, J. L., & Tatevossian, R. (2012). Large and great earthquakes in the Shillong plateau–Assam valley area of Northeast India Region: Pop-up and transverse tectonics. Tectonophysics, 532, 186-192. https://doi.org/10.1016/j.tecto .2012.02.007
  • BNBC. (2015). Bangladesh National Building Code
  • Rahman, M. Z., Siddiqua, S., & Kamal, A. M. (2020). Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh. Natural Hazards, 103, 2489-2532. https://doi.org/10.1007/s11069-020-04094-6
  • Alam, M. K., Hasan, A. S., Khan, M. R., Whitney, J. W., Abdullah, S. K. M., & Queen, J. E. (1990). Geological map of Bangladesh. Geological Survey of Bangladesh, Dhaka
  • Steckler, M. S., Akhter, S. H., & Seeber, L. (2008). Collision of the Ganges–Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters, 273(3-4), 367-378. https://doi.org/10.1016/j. epsl.2008.07.009
  • Luna, R., & Frost, J. D. (1998). Spatial liquefaction analysis system. Journal of Computing in Civil Engineering, 12(1), 48-56. https://doi.org/10.1061/ (ASCE)08873801(1998) 12:1(48)
  • Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982, June). Microzonation for soil liquefaction potential using simplified methods. In Proceedings of the 3rd international conference on microzonation, Seattle, 3(2), 1310-1330
  • Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils (pp. 276-276)
  • Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  • Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of geotechnical engineering, 112(3), 373-377. https://doi.org/10.1061/(ASCE)07339410(1986)112:3(373)
  • Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313. https://doi.org/10.1061/ (ASCE) 10900241(2001)127: 10(817)

GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh

Year 2026, Volume: 11 Issue: 2, 263 - 273
https://doi.org/10.26833/ijeg.1662672

Abstract

The term "earthquake" now refers to a catastrophic event that occurs worldwide. Due to its geographical position, Dinajpur Sadar Upazila is the most vulnerable area for earthquake-based liquefaction. Evaluating the liquefaction resistance of loose saturated sand is a crucial component of geotechnical site characterization. This investigation aims to determine liquefaction hazards for Dinajpur Sadar and develop soil classification maps. The article uses a simplified method dependent on the Standard Penetration Test's blow count (SPT-N) to assess the liquefaction risk induced by the earthquake. SPT data was gathered at sixty locations within the study region. Liquefaction risk was evaluated at every location in an earthquake scenario with Mw = 6-8.5 using a 0.20 g peak horizontal ground acceleration (PGA). The liquefaction risk was predicted using the estimated liquefaction potential index (LPI) for each site. The LPI values in the studied area ranged from 0 to 28 for earthquakes of magnitude 7.5 with very low to very high risk. The LPI of discrete locations was then used to create a hazards map using geospatial techniques. Hazard map’s legends indicate that an increase in earthquake magnitude raises the LPI. For Mw=6, the area was determined to be safe against liquefaction; however, at Mw=8.5, it was found to be most vulnerable, with a maximum LPI of 42.7. For any earthquake magnitude, LPI was found to be minimal in the central and central-south parts of the study area. The northern and southwestern parts of the research sites exhibit significant liquefaction vulnerability. The soil classification maps depict that at any depth, silty sand and low plastic clay are covered by most of the region. The developed risk map might be a valuable indicator for the Bangladesh government's disaster mitigation scheme.

References

  • Rahman, M. A., Ahmed, S., & Imam, M. O. (2020). Rational way of estimating liquefaction severity: an implication for Chattogram, the Port City of Bangladesh. Geotechnical and Geological Engineering, 38(2), 2359-2375. https://doi.org/10.1007/s10706-019-01134-2
  • Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction potential evaluation by deterministic and probabilistic approaches. Civil Engineering Journal, 8(7), 1459-1481. http://dx.doi.org/10.28991/CEJ-2022-08-07-010
  • Bilham, R., & England, P. (2001). Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature, 410(6830),806-809. https://doi.org/10.1038/35071 057
  • Hossain, M. B., Rahman, M. M., & Haque, M. R. (2021). Empirical correlation between shear wave velocity (Vs) and uncorrected standard penetration resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature Science and Technology, 3, 25-29. https://doi.org/10.36937/janset.2021.003.005
  • Mostazid, M. I., Mahabub, M., & Mahbur, M. (2019). Seismic Vulnerability Assessment of Existing RCC Buildings in Dinajpur City: A Case Study on Ward No 6. In 2rd International Conference on Planing, Architecture & Civil Engineering, 1-6.
  • Ministry of Disaster Management and Relief. (2015). Atlas: Seismic Risk Assessment in Bangladesh for Bogra, Dinajpur, Mymensingh, Rajshahi, Rangpur and Tangail City Corporation / Paurashava Areas, Bangladesh
  • Dawson, K. M., & Baise, L. G. (2005). Three-dimensional liquefaction potential analysis using geostatistical interpolation. Soil Dynamics and Earthquake Engineering, 25(5), 369-381. https://doi.org/10.1016/j.soildyn.2005.02.008
  • Rahman, M. M., Hossain, M. B., & Roknuzzaman, M. (2023). Effect of peak ground acceleration (PGA) on liquefaction behavior of subsoil: A case study of Dinajpur Sadar Upazila, Bangladesh. In AIP Conference Proceedings 2713(1). https://doi.org/10.1063/5.0129770
  • Kajihara, K., Mohan, P. R., Kiyota, T., & Konagai, K. (2016). Liquefaction-induced ground subsidence extracted from Digital Surface Models and its application to hazard map of Urayasu city, Japan. Japanese Geotechnical Society Special Publication, 2(22), 829-834. https://doi.org/10.3208/jgssp.TC203-02
  • Eraslan, S., Hatipoğlu, İ. K., Ocak, F., Işık, F., et al. (2024). Investigation of the relationship between collapsed buildings and ground in the February 6, 2023 Kahramanmaraş earthquake and earthquake collapse risk analysis. Geomatik, 9(2), 207-226. https://doi.org/10.29128/geomatik.1422639
  • Sayed, A., & Rahman, M. M. (2025). M5 Soft Computing Techniques for Assessment of Soil Liquefaction. Journal of Rehabilitation in Civil Engineering, 13(3), 199-214. https://doi.org/10.22075/jrce.2025.34669.2134
  • Satyam, D. N., & Rao, K. S. (2014). Liquefaction hazard assessment using SPT and VS for two cities in India. Indian Geotechnical Journal, 44, 468-479. https://doi.org/10.1007/s40098-014-0098-2
  • Demir, M., & Altaş, NT (2024). Determination of earthquake damage risk potential areas in Kars city based on GIS-based AHP analysis. Geomatik, 9(1), 123-140. https://doi.org/10.29128/geomatik.1375650
  • Rahman, M. Z., Siddiqua, S., & Kamal, A. M. (2015). Liquefaction hazard mapping by liquefaction potential index for Dhaka City, Bangladesh. Engineering geology, 188, 137-147. https://doi.org/10.1016/j.enggeo.2015.01.012
  • Hossain, M. B., & Rahman, M. M. (2025). Seismic microzonation and probability of ground failure assessment caused by liquefaction for Bogura District, Bangladesh. Journal of Rehabilitation in Civil Engineering, 13(2), 218-242. https://doi.org/10.22075/jrce.2024.34111.2086
  • Gautam, D., de Magistris, F. S., & Fabbrocino, G. (2017). Soil liquefaction in Kathmandu valley due to 25 April 2015 Gorkha, Nepal earthquake. Soil Dynamics and Earthquake Engineering, 97, 37-47. https://doi.org/10.1016/j.soildyn.2017.03.001
  • Tint, Z. L., Kyaw, N. M., & Kyaw, K. (2018). Development of soil distribution and liquefaction potential maps for downtown area in Yangon, Myanmar. Civil Engineering Journal, 4(3), 689-701. https://doi.org/10.28991/cej-0309108
  • Habib, W., Mahmood, S., Noor, S., Saleem, A., Siraj, M., & Ahmad, H. (2023). A post earthquake damage assessment using GIS in district Mirpur, Pakistan. Advanced GIS, 3(2), 53-58.
  • Onyıl, H. I. (2022). Geospatial intelligence (GeoINT) risk maps producing with geographic information systems (GIS) and creation of the 2D simulation model. Advanced GIS, 2(1), 01-07.
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244..
  • Civelekler, E. (2023). Using GIS for the allowable soil bearing capacity estimation according to the Terzaghi (1943) equation in Eskişehir city center, Türkiye. International Journal of Engineering and Geosciences, 8(3),310-317. https://doi.org/10.26833/ijeg.1212584
  • Civelekler, E., & Pekkan, E. (2022). The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences,7(3),302-313.
  • Rahman, M. M. (2025). GIS based allowable bearing capacity thematic maps of shallow foundation for Bogura District, Bangladesh. International Journal of Engineering and Geosciences, 10(3), 329-338. https://doi.org/10.26833/ijeg.1589939
  • Yakar, M., & Yılmaz, H. M. (2010). Close range photogrammetry and robotic total station in volume calculation..
  • Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59..
  • Topaloglu, R. H. (2022). Investigation of Land Use/Land Cover change in Mersin using geographical object-based image analysis (GEOBIA). Advanced Remote Sensing, 2(2), 40–46.
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
  • Kankanamge , H. P. N. K., & Mahmood, S. (2024). Post-Flood Disaster Management Challenges and Issues in the Bulathsinghala Divisional Secretariat Division, Sri Lanka: A Comprehensive Analysis and Strategic Framework for Resilience and Recovery. Advanced Geomatics, 4(1), 09–16.
  • Manizabayo, P., Ngwijabagabo , H., Nzayisenga , I., Nzamwita , S., Amani , L., Uwitonze , E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case study of Mpazi sub-catchment in the city of Kigali. Advanced GIS, 4(1), 31–41.
  • Oğuz, E., Oğuz, K., & Öztürk, K. (2022). Determination of flood susceptibility areas in Düzce region. Geomatik, 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Bijaber, N., Rochdi, A., Yessef, M., El Yacoubi, H. (2024). Mapping the structural vulnerability to drought in Morocco. International Journal of Engineering and Geosciences, 9(2), 264-280. https://doi.org/10.26833/ijeg.1404507
  • Rahman, M. Z., Kamal, A. M., & Siddiqua, S. (2018). Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh. Natural Hazards, 92, 1687-1715. https://doi.org/10.1007/s11069-018-3266-3
  • Kayal, J. R., Arefiev, S. S., Baruah, S., Hazarika, D., Gogoi, N., Gautam, J. L., & Tatevossian, R. (2012). Large and great earthquakes in the Shillong plateau–Assam valley area of Northeast India Region: Pop-up and transverse tectonics. Tectonophysics, 532, 186-192. https://doi.org/10.1016/j.tecto .2012.02.007
  • BNBC. (2015). Bangladesh National Building Code
  • Rahman, M. Z., Siddiqua, S., & Kamal, A. M. (2020). Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh. Natural Hazards, 103, 2489-2532. https://doi.org/10.1007/s11069-020-04094-6
  • Alam, M. K., Hasan, A. S., Khan, M. R., Whitney, J. W., Abdullah, S. K. M., & Queen, J. E. (1990). Geological map of Bangladesh. Geological Survey of Bangladesh, Dhaka
  • Steckler, M. S., Akhter, S. H., & Seeber, L. (2008). Collision of the Ganges–Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters, 273(3-4), 367-378. https://doi.org/10.1016/j. epsl.2008.07.009
  • Luna, R., & Frost, J. D. (1998). Spatial liquefaction analysis system. Journal of Computing in Civil Engineering, 12(1), 48-56. https://doi.org/10.1061/ (ASCE)08873801(1998) 12:1(48)
  • Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982, June). Microzonation for soil liquefaction potential using simplified methods. In Proceedings of the 3rd international conference on microzonation, Seattle, 3(2), 1310-1330
  • Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils (pp. 276-276)
  • Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  • Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of geotechnical engineering, 112(3), 373-377. https://doi.org/10.1061/(ASCE)07339410(1986)112:3(373)
  • Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313. https://doi.org/10.1061/ (ASCE) 10900241(2001)127: 10(817)
There are 43 citations in total.

Details

Primary Language English
Subjects Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Md Mahabub Rahman 0000-0003-1580-483X

Sonu Thakur 0009-0002-5021-5512

Sayed Ahmed 0009-0002-9702-641X

Rukaya Yasmin 0009-0000-5615-615X

Early Pub Date September 28, 2025
Publication Date October 6, 2025
Submission Date March 21, 2025
Acceptance Date May 2, 2025
Published in Issue Year 2026 Volume: 11 Issue: 2

Cite

APA Rahman, M. M., Thakur, S., Ahmed, S., Yasmin, R. (2025). GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. International Journal of Engineering and Geosciences, 11(2), 263-273. https://doi.org/10.26833/ijeg.1662672
AMA Rahman MM, Thakur S, Ahmed S, Yasmin R. GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. IJEG. September 2025;11(2):263-273. doi:10.26833/ijeg.1662672
Chicago Rahman, Md Mahabub, Sonu Thakur, Sayed Ahmed, and Rukaya Yasmin. “GIS-Based Development of Liquefaction Hazard and Soil Distribution Maps for Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences 11, no. 2 (September 2025): 263-73. https://doi.org/10.26833/ijeg.1662672.
EndNote Rahman MM, Thakur S, Ahmed S, Yasmin R (September 1, 2025) GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. International Journal of Engineering and Geosciences 11 2 263–273.
IEEE M. M. Rahman, S. Thakur, S. Ahmed, and R. Yasmin, “GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh”, IJEG, vol. 11, no. 2, pp. 263–273, 2025, doi: 10.26833/ijeg.1662672.
ISNAD Rahman, Md Mahabub et al. “GIS-Based Development of Liquefaction Hazard and Soil Distribution Maps for Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences 11/2 (September2025), 263-273. https://doi.org/10.26833/ijeg.1662672.
JAMA Rahman MM, Thakur S, Ahmed S, Yasmin R. GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. IJEG. 2025;11:263–273.
MLA Rahman, Md Mahabub et al. “GIS-Based Development of Liquefaction Hazard and Soil Distribution Maps for Dinajpur Sadar, Bangladesh”. International Journal of Engineering and Geosciences, vol. 11, no. 2, 2025, pp. 263-7, doi:10.26833/ijeg.1662672.
Vancouver Rahman MM, Thakur S, Ahmed S, Yasmin R. GIS-based development of liquefaction hazard and soil distribution maps for Dinajpur Sadar, Bangladesh. IJEG. 2025;11(2):263-7.