Research Article
BibTex RIS Cite

Year 2026, Volume: 11 Issue: 2, 392 - 407

Abstract

References

  • Ma, C., Li, X., & McCabe, M. F. (2020). Retrieval of high-resolution soil moisture through a combination of Sentinel-1 and Sentinel-2 data. Remote Sensing, 12(14), 1–28. https://doi.org/10.3390/rs12142303
  • Çelik, M. Ö., Kuşak, L., & Yakar, M. (2024). Assessment of groundwater potential zones utilizing geographic information system-based analytical hierarchy process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and technique for order preference by similarity to ideal solution methods: a case study in Mersin, Türkiye. Sustainability, 16(5), 2202.
  • Rabhi, L., Falih, N., Afraites, L., & Bouikhalene, B. (2021). Digital agriculture based on big data analytics: A focus on predictive irrigation for smart farming in Morocco. Indonesian Journal of Electrical Engineering and Computer Science, 24(1), 581–589. https://doi.org/10.11591/ijeecs.v24.i1.pp581-589
  • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015
  • Tronquo, E., Lievens, H., Bouchat, J., Defourny, P., Baghdadi, N., & Verhoest, N. E. C. (2022). Soil Moisture Retrieval Using Multistatic L-Band SAR and Effective Roughness Modeling. Remote Sensing, 14(7), 1–23. https://doi.org/10.3390/rs14071650
  • Cha, Y., Park, S. S., Kim, K., Byeon, M., & Stow, C. A. (2014). Water Resources Research, 5375–5377. https://doi.org/10.1002/2013WR014979.Reply
  • Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil Moisture Remote Sensing: State‐of‐the‐Science. Vadose Zone Journal, 16(1), 1–9. https://doi.org/10.2136/vzj2016.10.0105
  • Unel, F. B., Kusak, L., Yakar, M., Sahin, A., Dogan, H., & Demir, F. (2025). Statistical and Visual Evaluation of Artificial Neural Networks and Multiple Linear Regression Performances in Estimating Reference Crop Evapotranspiration for Mersin. Revue Internationale de Geomatique, 34(1), 433-460.
  • Sabaghy, S., Walker, J. P., Renzullo, L. J., & Jackson, T. J. (2018). Spatially enhanced passive microwave-derived soil moisture: Capabilities and opportunities. Remote Sensing of Environment, 209(January), 551–580. https://doi.org/10.1016/j.rse.2018.02.065
  • Ezzahar, J., Ouaadi, N., Zribi, M., Elfarkh, J., Aouade, G., Khabba, S., … Jarlan, L. (2020). Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from Sentinel-1 data. Remote Sensing, 12(1), 1–20. https://doi.org/10.3390/RS12010072
  • Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C., & Daliakopoulos, I. N. (2021). Regionalizing Root-Zone Soil Moisture Estimates From ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate. Water Resources Research, 57(5), 1–22. https://doi.org/10.1029/2020WR029249
  • Do, S. K., Akhtar, F., Goffin, B., Aryal, A., Tran, T. N. D., Lipscomb, M., & Lakshmi, V. (2024). Assessing terrestrial water storage variations in Afghanistan using GRACE and FLDAS-Central Asia data. Journal of Hydrology: Regional Studies, 55. https://doi.org/10.1016/j.ejrh.2024.101906
  • Duysak, H., & Yigit, E. (2022). Investigation of the performance of different wavelet-based fusions of SAR and optical images using Sentinel-1 and Sentinel-2 datasets. International Journal of Engineering and Geosciences, 7(1), 81–90. https://doi.org/10.26833/ijeg.882589
  • Nativel, S., Ayari, E., Rodriguez-Fernandez, N., Baghdadi, N., Madelon, R., Albergel, C., & Zribi, M. (2022). Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation. Remote Sensing, 14(10), 1–16. https://doi.org/10.3390/rs14102434
  • Çevikalp, M. R., Işık, M. S., Çelik, M. F., & Musaoğlu, N. (2024). CYGNSS toprak nemi verilerinin SMAP uydusu ve ISMN istasyonları ile karşılaştırmalı analizi. Geomatik, 9(2), 227–237. https://doi.org/10.29128/geomatik.1424069
  • Atun, R., & Gursoy, O. (2024). Determining soil moisture with Sentinel-1 image. Journal of Geodesy and Geoinformation, 11(2), 149–156. https://doi.org/10.9733/jgg.2024r0010.e
  • Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., … Van Zyl, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918
  • Notarnicola, C., Angiulli, M., & Posa, F. (2006). Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 925–934. https://doi.org/10.1109/TGRS.2006.872287
  • Baghdadi, N., Hajj, M. El, Zribi, M., & Bousbih, S. (2017). Calibration of the Water Cloud Model at C-Band for winter crop fields and grasslands. Remote Sensing, 9(9), 1–13. https://doi.org/10.3390/rs9090969
  • Desai, G. T., & Gaikwad, A. N. (2024). Soil moisture estimation using ground scatterometer and Sentinel-1 data. Bulletin of Electrical Engineering and Informatics, 13(3), 1707–1717. https://doi.org/10.11591/eei.v13i3.6433
  • Mansoor, A., & Shahzad, L. (2025). Climate Change in Agriculture: Impacts, Adaptation, and Mitigation. https://doi.org/10.1007/978-981-96-2413-3_13
  • Aggarwal, P. K., & Singh, S. D. (n.d.). Climate Change Impact , Adaptation and Mitigation in Agriculture : Editors. https://ccafs.cgiar.org
  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., … Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247. https://doi.org/10.1016/j.rse.2020.111954
  • He, B., Xing, M., & Bai, X. (2014). A synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sensing, 6(11), 10966–10985. https://doi.org/10.3390/rs61110966
  • Yilmaz, V. (2025). Climate patterns in Europe: A focus on ten countries through remote sensing. International Journal of Engineering and Geosciences, 10(3), 398–418. https://doi.org/10.26833/ijeg.1583206
  • Mogaraju, J. K. (2024). Machine learning assisted prediction of land surface temperature (LST) based on major air pollutants over the Annamayya District of India. International Journal of Engineering and Geosciences, 9(2), 233–246. https://doi.org/10.26833/ijeg.1394111
  • Uyar, N. (2024). Effects of Climate Change and Air Pollution on Soil Moisture : The Case of Türkiye İklim Değişikliği ve Hava Kirliliğinin Toprak Nemi Üzerindeki Etkileri : Türkiye Örneği, 3(2), 135–152.
  • Ghasemian Sorboni, N., Pahlavani, P., & Bigdeli, B. (2019). Vegetation mapping of sentinel-1 and 2 satellite images using convolutional neural network and random forest with the aid of dual-polarized and optical vegetation indexes. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 435–440). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-4-W18-435-2019
  • Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72(March), 76–85. https://doi.org/10.1016/j.jag.2018.05.026
  • Kseneman, M., Gleich, D., & Čučej, Ž. (2011). Soil moisture estimation using high-resolution spotlight terraSAR-X data. IEEE Geoscience and Remote Sensing Letters, 8(4), 686–690. https://doi.org/10.1109/LGRS.2010.2099641
  • Mallah, S., Delsouz Khaki, B., Davatgar, N., Scholten, T., Amirian-Chakan, A., Emadi, M., … Taghizadeh-Mehrjardi, R. (2022). Predicting Soil Textural Classes Using Random Forest Models: Learning from Imbalanced Dataset. Agronomy, 12(11), 1–16. https://doi.org/10.3390/agronomy12112613
  • Jia, Y., Jin, S., Savi, P., Yan, Q., & Li, W. (2020). Modeling and theoretical analysis of gnss-r soil moisture retrieval based on the random forest and support vector machine learning approach. Remote Sensing, 12(22), 1–24. https://doi.org/10.3390/rs12223679
  • Pokhariyal, S., Patel, N. R., & Govind, A. (2023). Machine Learning-Driven Remote Sensing Applications for Agriculture in India—A Systematic Review. Agronomy, 13(9), 1–30. https://doi.org/10.3390/agronomy13092302
  • Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8
  • Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-based radiometric slope correction for Sentinel-1 on google earth engine. Remote Sensing, 12(11), 1–14. https://doi.org/10.3390/rs12111867
  • Shahriari, M. A., Aghighi, H., Azadbakht, M., Ashourloo, D., Matkan, A. A., Brakhasi, F., & Walker, J. P. (2025). Soil moisture estimation using combined SAR and optical imagery: Application of seasonal machine learning algorithms. Advances in Space Research, (xxxx). https://doi.org/10.1016/j.asr.2025.01.064
  • Li, A., Tan, X., Wu, W., Liu, H., & Zhu, J. (2017). Predicting active-layer soil thickness using topographic variables at a small watershed scale. PLoS ONE, 12(9), 1–17. https://doi.org/10.1371/journal.pone.0183742
  • Géant, C. B., Gustave, M. N., & Schmitz, S. (2023). Mapping small inland wetlands in the South-Kivu province by integrating optical and SAR data with statistical models for accurate distribution assessment. Scientific Reports, 13(1), 1–23. https://doi.org/10.1038/s41598-023-43292-7
  • Shahriari, M. A., Aghighi, H., Azadbakht, M., Ashourloo, D., Matkan, A. A., Brakhasi, F., & Walker, J. P. (2025). Soil moisture estimation using combined SAR and optical imagery: Application of seasonal machine learning algorithms. Advances in Space Research, 75(8), 6207–6221. https://doi.org/10.1016/j.asr.2025.01.064
  • Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., … Orth, R. (2022). Widespread increasing vegetation sensitivity to soil moisture. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-31667-9
  • Barh, D., Khan, M. S., & Davies, E. (2015). PlantOmics: The omics of plant science. PlantOmics: The Omics of Plant Science. https://doi.org/10.1007/978-81-322-2172-2
  • Lamichhane, M., Mehan, S., & Mankin, K. R. (2025). Soil Moisture Prediction Using Remote Sensing and Machine Learning Algorithms: A Review on Progress, Challenges, and Opportunities. Remote Sensing, 17(14). https://doi.org/10.3390/rs17142397
  • Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 1(1), 48–56. https://doi.org/10.1016/j.visinf.2017.01.006
  • Feizizadeh, B., Yariyan, P., Yakar, M., Blaschke, T., & Almuraqab, N. A. S. (2025). An integrated hybrid deep learning data driven approaches for spatiotemporal mapping of land susceptibility to salt/dust emissions. Advances in Space Research.
  • Vahidi, M., Shafian, S., & Frame, W. H. (2025). Precision Soil Moisture Monitoring Through Drone-Based Hyperspectral Imaging and PCA-Driven Machine Learning. Sensors, 25(3). https://doi.org/10.3390/s25030782
  • Asadollah, S. B. H. S., Sharafati, A., Saeedi, M., & Shahid, S. (2024). Estimation of soil moisture from remote sensing products using an ensemble machine learning model: a case study of Lake Urmia Basin, Iran. Earth Science Informatics, 17(1), 385–400. https://doi.org/10.1007/s12145-023-01172-8
  • Feizizadeh, B., Abdollahi, Z., & Shokati, B. (2022). A GIS-Based Spatiotemporal Impact Assessment of Droughts in the Hyper-Saline Urmia Lake Basin on the Hydro-Geochemical Quality of Nearby Aquifers. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112516
  • Soltani, K., & Azari, A. (2024). Terrestrial water storage anomaly estimating using machine learning techniques and satellite-based data (a case study of Lake Urmia Basin). Irrigation and Drainage, 73(1), 215–229. https://doi.org/10.1002/ird.2863
  • Hesami, A., & Amini, A. (2016). Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake and Reservoir Management, 32(3), 288–296. https://doi.org/10.1080/10402381.2016.1211202
  • Hengl, T., De Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., … Gonzalez, M. R. (2014). SoilGrids1km - Global soil information based on automated mapping. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0105992
  • Radočaj, D., Jurišić, M., Rapčan, I., Domazetović, F., Milošević, R., & Plaščak, I. (2023). An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia. Land, 12(5). https://doi.org/10.3390/land12051034
  • Schubert, A. (2022). Guide to S-1 Geocoding Guide to Sentinel-1 Geocoding. https://sentiwiki.copernicus.eu
  • Sorokin, A., Stepanov, A., Dubrovin, K., & Verkhoturov, A. (2024). Enhancement of Comparative Assessment Approaches for Synthetic Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and Identification—Khabarovsk Territory (Russia) Case Study. Remote Sensing, 16(14). https://doi.org/10.3390/rs16142532
  • de Roos, S., Bechtold, M., Busschaert, L., Lievens, H., & De Lannoy, G. J. M. (2024). Assimilation of Sentinel-1 Backscatter to Update AquaCrop Estimates of Soil Moisture and Crop Biomass. Journal of Geophysical Research: Biogeosciences, 129(10). https://doi.org/10.1029/2024JG008231
  • Sorokin, A., Stepanov, A., Dubrovin, K., & Verkhoturov, A. (2024). Enhancement of Comparative Assessment Approaches for Synthetic Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and Identification—Khabarovsk Territory (Russia) Case Study. Remote Sensing, 16(14). https://doi.org/10.3390/rs16142532
  • Das, D. P., & Pandey, A. (2025). Soil moisture retrieval from dual-polarized Sentinel-1 SAR data over agricultural regions using a water cloud model. Environmental Monitoring and Assessment, 197(1). https://doi.org/10.1007/s10661-024-13510-4
  • Periasamy, S. (2018). Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217(April), 537–549. https://doi.org/10.1016/j.rse.2018.09.003
  • Periasamy, S. (2018). Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217(September), 537–549. https://doi.org/10.1016/j.rse.2018.09.003
  • Raksapatcharawong, M., Veerakachen, W., Homma, K., Maki, M., & Oki, K. (2020). Satellite-based drought impact assessment on rice yield in Thailand with SIMRIW-RS. Remote Sensing, 12(13). https://doi.org/10.3390/rs12132099
  • Santos, E. P. dos, Moreira, M. C., Fernandes-Filho, E. I., Demattê, J. A. M., Dionizio, E. A., Silva, D. D. da, … Costa, M. H. (2023). Sentinel-1 Imagery Used for Estimation of Soil Organic Carbon by Dual-Polarization SAR Vegetation Indices. Remote Sensing, 15(23). https://doi.org/10.3390/rs15235464
  • Yaman, Ş., & Tunç Görmüş, E. (2025). Sentinel-2 ve Landsat-8 ile Bulut Tabanlı Orman Yangın Analizi. Geomatik, 10(3), 316–330. https://doi.org/10.29128/geomatik.1603707
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
  • Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), 1949–1964. https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
  • de Roos, S., Bechtold, M., Busschaert, L., Lievens, H., & De Lannoy, G. J. M. (2024). Assimilation of Sentinel-1 Backscatter to Update AquaCrop Estimates of Soil Moisture and Crop Biomass. Journal of Geophysical Research: Biogeosciences, 129(10), 1–29. https://doi.org/10.1029/2024JG008231
  • Bento, V. A., Gouveia, C. M., DaCamara, C. C., & Trigo, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259(September), 286–295. https://doi.org/10.1016/j.agrformet.2018.05.014
  • Santos, E. P. dos, Santos, I. C., Bussinguer, J. de F., Cruz, R. R. P., Amaral, C. H. do, Silva, D. D. da, & Moreira, M. C. (2024). Dual-polarization vegetation indices for the Sentinel-1 sar sensor and its correlation to forest biomass from Atlantic Forest fragments. Cerne, 30(30), 1–10. https://doi.org/10.1590/01047760202330013286
  • Souissi, R., Al Bitar, A., & Zribi, M. (2020). Accuracy and transferability of artificial neural networks in predicting in situ root-zone soil moisture for various regions across the globe. Water (Switzerland), 12(11), 1–20. https://doi.org/10.3390/w12113109
  • Carrasco, L., O’Neil, A. W., Daniel Morton, R., & Rowland, C. S. (2019). Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030288
  • Atun, R., Gürsoy, Ö., & Koşaroğlu, S. (2024). Field Scale Soil Moisture Estimation with Ground Penetrating Radar and Sentinel 1 Data. Sustainability (Switzerland), 16(24). https://doi.org/10.3390/su162410995
  • Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., … Reiche, J. (2021). Sentinel-1 sar backscatter analysis ready data preparation in google earth engine. Remote Sensing, 13(10), 5–11. https://doi.org/10.3390/rs13101954
  • Kadı, F., & Yılmaz, O. S. (2024). Orman içi açıklıklara ait zamansal değişimlerin uzaktan algılama teknikleri ile Google Earth Engine platformunda tespit edilmesi: Trabzon-Düzköy İlçesi örneği. Geomatik, 9(2), 141–155. https://doi.org/10.29128/geomatik.1363873
  • Ebadi, R., Karımzadeh, S., Valizadeh Kamran, K., & Mahdavifard, M. (2025). Integrating Vegetation Indices and PRISMA Hyperspectral Imagery for Forest Risk Assessment in Northern Iran. International Journal of Engineering and Geosciences, 11(1), 163–182. https://doi.org/10.26833/ijeg.1640355
  • Hird, J. N., DeLancey, E. R., McDermid, G. J., & Kariyeva, J. (2017). Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping. Remote Sensing, 9(12). https://doi.org/10.3390/rs9121315
  • Nofrizal, A. Y., Sonobe, R., Yamashita, H., Morita, A., & Ikka, T. (2022). Estimating chlorophyll content of Zizania latifolia with hyperspectral data and random forest. International Journal of Engineering and Geosciences, 7(3), 221–228. https://doi.org/10.26833/ijeg.953188
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Cai, Y., Fang, Y., Huang, F., & Fan, L. (2024). Case study on the optimal scaling factor for semantic segmentation of remote sensing image. 2024 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing, MIGARS 2024, 1–3. https://doi.org/10.1109/MIGARS61408.2024.10544785
  • Guo, J., Bai, Q., Guo, W., Bu, Z., & Zhang, W. (2022). Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Computers and Electronics in Agriculture, 193(August 2021), 106670. https://doi.org/10.1016/j.compag.2021.106670
  • Carranza, C., Nolet, C., Pezij, M., & van der Ploeg, M. (2021). Root zone soil moisture estimation with Random Forest. Journal of Hydrology, 593(December 2020), 125840. https://doi.org/10.1016/j.jhydrol.2020.125840
  • Menon, A., & Lim, J. (2017). Hidden potential carbon. Banking. https://openknowledge.fao.org
  • Report, I. S. (2023). Summary for Policymakers of the Intergovernmental Panel on Climate Change. https://doi:10.59327/IPCC/AR69789291691647.001
  • Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., & Anguela, T. P. (2008). Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sensing of Environment, 112(12), 4370–4379. https://doi.org/10.1016/j.rse.2008.08.004
  • Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171. https://doi.org/10.1038/nclimate2837
  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., … Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sensing of Environment, 247. https://doi.org/10.1016/j.rse.2020.111954
  • De Luca, G., Silva, J. M. N., & Modica, G. (2022). Short-term temporal and spatial analysis for post-fire vegetation regrowth characterization and mapping in a Mediterranean ecosystem using optical and SAR image time-series. Geocarto International, 37(27), 15428–15462. https://doi.org/10.1080/10106049.2022.2097482
  • Dai, J., Zhu, L., & Walker, J. (2023). Machine Learning Methods for 1 km Soil Moisture Retrieval from Sentinel-1: An Evaluation with Limited Training Samples. Proceedings of the IEEE Radar Conference, 1–5. https://doi.org/10.1109/RADAR54928.2023.10371043
  • Hussain, A., Niaz, R., Almazah, M. M. A., Al-Rezami, A. Y., Cheng, H., & Tariq, A. (2025). Utilizing Logistic Regression and Random Forest to Model Meteorological Drought Persistence Across Seasonal Transitions. Earth Systems and Environment. https://doi.org/10.1007/s41748-025-00682-3
  • Chen, P. Y., Chen, C. C., Kang, C., Liu, J. W., & Li, Y. H. (2025). Soil water content prediction across seasons using random forest based on precipitation-related data. Computers and Electronics in Agriculture, 230(September 2024), 109802. https://doi.org/10.1016/j.compag.2024.109802
  • Jiaxin, Q., Jie, Y., Weidong, S., Lingli, Z., Lei, S., & Chaoya, D. (2024). Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms. Computers and Electronics in Agriculture, 217(January), 108518. https://doi.org/10.1016/j.compag.2023.108518

A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin

Year 2026, Volume: 11 Issue: 2, 392 - 407

Abstract

Radar satellite imagery has been widely used to obtain soil moisture (SM) estimates of high accuracy. Accurate information on surface soil moisture content under scalable conditions is important for hydrological and climatological applications. the aim of this study, the integration of multi-sensor satellite data to investigate the importance of features in various products and estimate soil moisture, is conducted using two machine learning models, Random Forest (RF) and Support Vector Regression (SVR), in the Lake Urmia basin. we used Sentinel-1 C-band Synthetic Aperture Radar (SAR) data, Sentinel-2 and Landsat-8 optical-thermal imagery, soil property maps (SoilGrids), and climate variables (FLDAS). at first analysis of correlation and regression was done seasonally for the four-year period to examine the importance and effectiveness of their use in estimating soil moisture. Then, the implementation of the model was done in two stages, using all the features (22) and 10 that were determined based on the performance of the model. The results show that soil organic carbon (SOC250) and radar indices governed winter and spring moisture dynamics, whereas vegetation indices dominated summer and autumn predictions, reflecting vegetation-climate-soil interactions. The Rand Forest model using all features had the highest accuracy of 0.88 in spring and the lowest in summer, with an accuracy of 0.80, while the SVR model had the lowest accuracy in summer (50.539) and the highest accuracy (0.628) in autumn, with the SVR results using the 10 most important features increasing by 0.1 R2 across all the variables. This increase in accuracy was observed in the RF model from 0.1 to 0.3, with the highest increase in accuracy in the summer. RF outperforms the SVR model in all evaluation metrics, including Mean Squared Error (MSE), R², and Mean Absolute Error ( MAE), for both feature sets and in all seasons. The Normalized Vegetation Structural Difference Index (NVSDI) and Normalized Radar Vegetation Difference Index (NRVDI) indices have helped improve model accuracy by providing more combined and detailed information about specific soil and vegetation characteristics. normalized difference vegetation index (NDVI) has a specific focus on vegetation, while NVSDI and NRVDI provide more comprehensive and detailed environmental information. These findings demonstrate the potential of multi-sensor data integration seasonally, for soil moisture estimation, providing and critical insight for hydrological modeling, monitoring environmental and agricultural.

Ethical Statement

June 30, 2025 Editor-in-Chief Prof. Dr. Murat Yakar International Journal of Engineering and Geosciences (IJEG) Dear Professor Yakar, I am pleased to submit our original research manuscript entitled: "A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: A case study of Lake Urmia basin" for your consideration for publication in the International Journal of Engineering and Geosciences (IJEG). This work has not been published previously, is not under consideration for publication elsewhere, and its publication has been approved by all authors as well as by the responsible authorities where the work was conducted. We confirm that, if accepted, the manuscript will not be published elsewhere in the same form in English or any other language, electronically or in print, without the prior written consent of the copyright holder. We believe that the findings of this study contribute significantly to the field of remote sensing and geosciences, particularly in the context of soil moisture monitoring using SAR and multispectral data. Thank you for your time and consideration. Sincerely, Dr. Maram Sadeghi Department of Remote Sensing and Geographic Information Systems Faculty of Planning and Environmental Science University of Tabriz, Tabriz, Iran Email: sadeghi.maryam@tabrizu.ac.ir

Supporting Institution

The authors declare no conflicts of interest.

Thanks

The authors express their gratitude to the European Space Agency (ESA) for the freely available Sentinel-1 and multispectral data, which were crucial for this study.

References

  • Ma, C., Li, X., & McCabe, M. F. (2020). Retrieval of high-resolution soil moisture through a combination of Sentinel-1 and Sentinel-2 data. Remote Sensing, 12(14), 1–28. https://doi.org/10.3390/rs12142303
  • Çelik, M. Ö., Kuşak, L., & Yakar, M. (2024). Assessment of groundwater potential zones utilizing geographic information system-based analytical hierarchy process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and technique for order preference by similarity to ideal solution methods: a case study in Mersin, Türkiye. Sustainability, 16(5), 2202.
  • Rabhi, L., Falih, N., Afraites, L., & Bouikhalene, B. (2021). Digital agriculture based on big data analytics: A focus on predictive irrigation for smart farming in Morocco. Indonesian Journal of Electrical Engineering and Computer Science, 24(1), 581–589. https://doi.org/10.11591/ijeecs.v24.i1.pp581-589
  • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015
  • Tronquo, E., Lievens, H., Bouchat, J., Defourny, P., Baghdadi, N., & Verhoest, N. E. C. (2022). Soil Moisture Retrieval Using Multistatic L-Band SAR and Effective Roughness Modeling. Remote Sensing, 14(7), 1–23. https://doi.org/10.3390/rs14071650
  • Cha, Y., Park, S. S., Kim, K., Byeon, M., & Stow, C. A. (2014). Water Resources Research, 5375–5377. https://doi.org/10.1002/2013WR014979.Reply
  • Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil Moisture Remote Sensing: State‐of‐the‐Science. Vadose Zone Journal, 16(1), 1–9. https://doi.org/10.2136/vzj2016.10.0105
  • Unel, F. B., Kusak, L., Yakar, M., Sahin, A., Dogan, H., & Demir, F. (2025). Statistical and Visual Evaluation of Artificial Neural Networks and Multiple Linear Regression Performances in Estimating Reference Crop Evapotranspiration for Mersin. Revue Internationale de Geomatique, 34(1), 433-460.
  • Sabaghy, S., Walker, J. P., Renzullo, L. J., & Jackson, T. J. (2018). Spatially enhanced passive microwave-derived soil moisture: Capabilities and opportunities. Remote Sensing of Environment, 209(January), 551–580. https://doi.org/10.1016/j.rse.2018.02.065
  • Ezzahar, J., Ouaadi, N., Zribi, M., Elfarkh, J., Aouade, G., Khabba, S., … Jarlan, L. (2020). Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from Sentinel-1 data. Remote Sensing, 12(1), 1–20. https://doi.org/10.3390/RS12010072
  • Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C., & Daliakopoulos, I. N. (2021). Regionalizing Root-Zone Soil Moisture Estimates From ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate. Water Resources Research, 57(5), 1–22. https://doi.org/10.1029/2020WR029249
  • Do, S. K., Akhtar, F., Goffin, B., Aryal, A., Tran, T. N. D., Lipscomb, M., & Lakshmi, V. (2024). Assessing terrestrial water storage variations in Afghanistan using GRACE and FLDAS-Central Asia data. Journal of Hydrology: Regional Studies, 55. https://doi.org/10.1016/j.ejrh.2024.101906
  • Duysak, H., & Yigit, E. (2022). Investigation of the performance of different wavelet-based fusions of SAR and optical images using Sentinel-1 and Sentinel-2 datasets. International Journal of Engineering and Geosciences, 7(1), 81–90. https://doi.org/10.26833/ijeg.882589
  • Nativel, S., Ayari, E., Rodriguez-Fernandez, N., Baghdadi, N., Madelon, R., Albergel, C., & Zribi, M. (2022). Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation. Remote Sensing, 14(10), 1–16. https://doi.org/10.3390/rs14102434
  • Çevikalp, M. R., Işık, M. S., Çelik, M. F., & Musaoğlu, N. (2024). CYGNSS toprak nemi verilerinin SMAP uydusu ve ISMN istasyonları ile karşılaştırmalı analizi. Geomatik, 9(2), 227–237. https://doi.org/10.29128/geomatik.1424069
  • Atun, R., & Gursoy, O. (2024). Determining soil moisture with Sentinel-1 image. Journal of Geodesy and Geoinformation, 11(2), 149–156. https://doi.org/10.9733/jgg.2024r0010.e
  • Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., … Van Zyl, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918
  • Notarnicola, C., Angiulli, M., & Posa, F. (2006). Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 925–934. https://doi.org/10.1109/TGRS.2006.872287
  • Baghdadi, N., Hajj, M. El, Zribi, M., & Bousbih, S. (2017). Calibration of the Water Cloud Model at C-Band for winter crop fields and grasslands. Remote Sensing, 9(9), 1–13. https://doi.org/10.3390/rs9090969
  • Desai, G. T., & Gaikwad, A. N. (2024). Soil moisture estimation using ground scatterometer and Sentinel-1 data. Bulletin of Electrical Engineering and Informatics, 13(3), 1707–1717. https://doi.org/10.11591/eei.v13i3.6433
  • Mansoor, A., & Shahzad, L. (2025). Climate Change in Agriculture: Impacts, Adaptation, and Mitigation. https://doi.org/10.1007/978-981-96-2413-3_13
  • Aggarwal, P. K., & Singh, S. D. (n.d.). Climate Change Impact , Adaptation and Mitigation in Agriculture : Editors. https://ccafs.cgiar.org
  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., … Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247. https://doi.org/10.1016/j.rse.2020.111954
  • He, B., Xing, M., & Bai, X. (2014). A synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sensing, 6(11), 10966–10985. https://doi.org/10.3390/rs61110966
  • Yilmaz, V. (2025). Climate patterns in Europe: A focus on ten countries through remote sensing. International Journal of Engineering and Geosciences, 10(3), 398–418. https://doi.org/10.26833/ijeg.1583206
  • Mogaraju, J. K. (2024). Machine learning assisted prediction of land surface temperature (LST) based on major air pollutants over the Annamayya District of India. International Journal of Engineering and Geosciences, 9(2), 233–246. https://doi.org/10.26833/ijeg.1394111
  • Uyar, N. (2024). Effects of Climate Change and Air Pollution on Soil Moisture : The Case of Türkiye İklim Değişikliği ve Hava Kirliliğinin Toprak Nemi Üzerindeki Etkileri : Türkiye Örneği, 3(2), 135–152.
  • Ghasemian Sorboni, N., Pahlavani, P., & Bigdeli, B. (2019). Vegetation mapping of sentinel-1 and 2 satellite images using convolutional neural network and random forest with the aid of dual-polarized and optical vegetation indexes. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 435–440). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-4-W18-435-2019
  • Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72(March), 76–85. https://doi.org/10.1016/j.jag.2018.05.026
  • Kseneman, M., Gleich, D., & Čučej, Ž. (2011). Soil moisture estimation using high-resolution spotlight terraSAR-X data. IEEE Geoscience and Remote Sensing Letters, 8(4), 686–690. https://doi.org/10.1109/LGRS.2010.2099641
  • Mallah, S., Delsouz Khaki, B., Davatgar, N., Scholten, T., Amirian-Chakan, A., Emadi, M., … Taghizadeh-Mehrjardi, R. (2022). Predicting Soil Textural Classes Using Random Forest Models: Learning from Imbalanced Dataset. Agronomy, 12(11), 1–16. https://doi.org/10.3390/agronomy12112613
  • Jia, Y., Jin, S., Savi, P., Yan, Q., & Li, W. (2020). Modeling and theoretical analysis of gnss-r soil moisture retrieval based on the random forest and support vector machine learning approach. Remote Sensing, 12(22), 1–24. https://doi.org/10.3390/rs12223679
  • Pokhariyal, S., Patel, N. R., & Govind, A. (2023). Machine Learning-Driven Remote Sensing Applications for Agriculture in India—A Systematic Review. Agronomy, 13(9), 1–30. https://doi.org/10.3390/agronomy13092302
  • Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8
  • Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-based radiometric slope correction for Sentinel-1 on google earth engine. Remote Sensing, 12(11), 1–14. https://doi.org/10.3390/rs12111867
  • Shahriari, M. A., Aghighi, H., Azadbakht, M., Ashourloo, D., Matkan, A. A., Brakhasi, F., & Walker, J. P. (2025). Soil moisture estimation using combined SAR and optical imagery: Application of seasonal machine learning algorithms. Advances in Space Research, (xxxx). https://doi.org/10.1016/j.asr.2025.01.064
  • Li, A., Tan, X., Wu, W., Liu, H., & Zhu, J. (2017). Predicting active-layer soil thickness using topographic variables at a small watershed scale. PLoS ONE, 12(9), 1–17. https://doi.org/10.1371/journal.pone.0183742
  • Géant, C. B., Gustave, M. N., & Schmitz, S. (2023). Mapping small inland wetlands in the South-Kivu province by integrating optical and SAR data with statistical models for accurate distribution assessment. Scientific Reports, 13(1), 1–23. https://doi.org/10.1038/s41598-023-43292-7
  • Shahriari, M. A., Aghighi, H., Azadbakht, M., Ashourloo, D., Matkan, A. A., Brakhasi, F., & Walker, J. P. (2025). Soil moisture estimation using combined SAR and optical imagery: Application of seasonal machine learning algorithms. Advances in Space Research, 75(8), 6207–6221. https://doi.org/10.1016/j.asr.2025.01.064
  • Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., … Orth, R. (2022). Widespread increasing vegetation sensitivity to soil moisture. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-31667-9
  • Barh, D., Khan, M. S., & Davies, E. (2015). PlantOmics: The omics of plant science. PlantOmics: The Omics of Plant Science. https://doi.org/10.1007/978-81-322-2172-2
  • Lamichhane, M., Mehan, S., & Mankin, K. R. (2025). Soil Moisture Prediction Using Remote Sensing and Machine Learning Algorithms: A Review on Progress, Challenges, and Opportunities. Remote Sensing, 17(14). https://doi.org/10.3390/rs17142397
  • Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 1(1), 48–56. https://doi.org/10.1016/j.visinf.2017.01.006
  • Feizizadeh, B., Yariyan, P., Yakar, M., Blaschke, T., & Almuraqab, N. A. S. (2025). An integrated hybrid deep learning data driven approaches for spatiotemporal mapping of land susceptibility to salt/dust emissions. Advances in Space Research.
  • Vahidi, M., Shafian, S., & Frame, W. H. (2025). Precision Soil Moisture Monitoring Through Drone-Based Hyperspectral Imaging and PCA-Driven Machine Learning. Sensors, 25(3). https://doi.org/10.3390/s25030782
  • Asadollah, S. B. H. S., Sharafati, A., Saeedi, M., & Shahid, S. (2024). Estimation of soil moisture from remote sensing products using an ensemble machine learning model: a case study of Lake Urmia Basin, Iran. Earth Science Informatics, 17(1), 385–400. https://doi.org/10.1007/s12145-023-01172-8
  • Feizizadeh, B., Abdollahi, Z., & Shokati, B. (2022). A GIS-Based Spatiotemporal Impact Assessment of Droughts in the Hyper-Saline Urmia Lake Basin on the Hydro-Geochemical Quality of Nearby Aquifers. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112516
  • Soltani, K., & Azari, A. (2024). Terrestrial water storage anomaly estimating using machine learning techniques and satellite-based data (a case study of Lake Urmia Basin). Irrigation and Drainage, 73(1), 215–229. https://doi.org/10.1002/ird.2863
  • Hesami, A., & Amini, A. (2016). Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake and Reservoir Management, 32(3), 288–296. https://doi.org/10.1080/10402381.2016.1211202
  • Hengl, T., De Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., … Gonzalez, M. R. (2014). SoilGrids1km - Global soil information based on automated mapping. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0105992
  • Radočaj, D., Jurišić, M., Rapčan, I., Domazetović, F., Milošević, R., & Plaščak, I. (2023). An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia. Land, 12(5). https://doi.org/10.3390/land12051034
  • Schubert, A. (2022). Guide to S-1 Geocoding Guide to Sentinel-1 Geocoding. https://sentiwiki.copernicus.eu
  • Sorokin, A., Stepanov, A., Dubrovin, K., & Verkhoturov, A. (2024). Enhancement of Comparative Assessment Approaches for Synthetic Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and Identification—Khabarovsk Territory (Russia) Case Study. Remote Sensing, 16(14). https://doi.org/10.3390/rs16142532
  • de Roos, S., Bechtold, M., Busschaert, L., Lievens, H., & De Lannoy, G. J. M. (2024). Assimilation of Sentinel-1 Backscatter to Update AquaCrop Estimates of Soil Moisture and Crop Biomass. Journal of Geophysical Research: Biogeosciences, 129(10). https://doi.org/10.1029/2024JG008231
  • Sorokin, A., Stepanov, A., Dubrovin, K., & Verkhoturov, A. (2024). Enhancement of Comparative Assessment Approaches for Synthetic Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and Identification—Khabarovsk Territory (Russia) Case Study. Remote Sensing, 16(14). https://doi.org/10.3390/rs16142532
  • Das, D. P., & Pandey, A. (2025). Soil moisture retrieval from dual-polarized Sentinel-1 SAR data over agricultural regions using a water cloud model. Environmental Monitoring and Assessment, 197(1). https://doi.org/10.1007/s10661-024-13510-4
  • Periasamy, S. (2018). Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217(April), 537–549. https://doi.org/10.1016/j.rse.2018.09.003
  • Periasamy, S. (2018). Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217(September), 537–549. https://doi.org/10.1016/j.rse.2018.09.003
  • Raksapatcharawong, M., Veerakachen, W., Homma, K., Maki, M., & Oki, K. (2020). Satellite-based drought impact assessment on rice yield in Thailand with SIMRIW-RS. Remote Sensing, 12(13). https://doi.org/10.3390/rs12132099
  • Santos, E. P. dos, Moreira, M. C., Fernandes-Filho, E. I., Demattê, J. A. M., Dionizio, E. A., Silva, D. D. da, … Costa, M. H. (2023). Sentinel-1 Imagery Used for Estimation of Soil Organic Carbon by Dual-Polarization SAR Vegetation Indices. Remote Sensing, 15(23). https://doi.org/10.3390/rs15235464
  • Yaman, Ş., & Tunç Görmüş, E. (2025). Sentinel-2 ve Landsat-8 ile Bulut Tabanlı Orman Yangın Analizi. Geomatik, 10(3), 316–330. https://doi.org/10.29128/geomatik.1603707
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2024). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367-382.
  • Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), 1949–1964. https://doi.org/10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
  • de Roos, S., Bechtold, M., Busschaert, L., Lievens, H., & De Lannoy, G. J. M. (2024). Assimilation of Sentinel-1 Backscatter to Update AquaCrop Estimates of Soil Moisture and Crop Biomass. Journal of Geophysical Research: Biogeosciences, 129(10), 1–29. https://doi.org/10.1029/2024JG008231
  • Bento, V. A., Gouveia, C. M., DaCamara, C. C., & Trigo, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259(September), 286–295. https://doi.org/10.1016/j.agrformet.2018.05.014
  • Santos, E. P. dos, Santos, I. C., Bussinguer, J. de F., Cruz, R. R. P., Amaral, C. H. do, Silva, D. D. da, & Moreira, M. C. (2024). Dual-polarization vegetation indices for the Sentinel-1 sar sensor and its correlation to forest biomass from Atlantic Forest fragments. Cerne, 30(30), 1–10. https://doi.org/10.1590/01047760202330013286
  • Souissi, R., Al Bitar, A., & Zribi, M. (2020). Accuracy and transferability of artificial neural networks in predicting in situ root-zone soil moisture for various regions across the globe. Water (Switzerland), 12(11), 1–20. https://doi.org/10.3390/w12113109
  • Carrasco, L., O’Neil, A. W., Daniel Morton, R., & Rowland, C. S. (2019). Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030288
  • Atun, R., Gürsoy, Ö., & Koşaroğlu, S. (2024). Field Scale Soil Moisture Estimation with Ground Penetrating Radar and Sentinel 1 Data. Sustainability (Switzerland), 16(24). https://doi.org/10.3390/su162410995
  • Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., … Reiche, J. (2021). Sentinel-1 sar backscatter analysis ready data preparation in google earth engine. Remote Sensing, 13(10), 5–11. https://doi.org/10.3390/rs13101954
  • Kadı, F., & Yılmaz, O. S. (2024). Orman içi açıklıklara ait zamansal değişimlerin uzaktan algılama teknikleri ile Google Earth Engine platformunda tespit edilmesi: Trabzon-Düzköy İlçesi örneği. Geomatik, 9(2), 141–155. https://doi.org/10.29128/geomatik.1363873
  • Ebadi, R., Karımzadeh, S., Valizadeh Kamran, K., & Mahdavifard, M. (2025). Integrating Vegetation Indices and PRISMA Hyperspectral Imagery for Forest Risk Assessment in Northern Iran. International Journal of Engineering and Geosciences, 11(1), 163–182. https://doi.org/10.26833/ijeg.1640355
  • Hird, J. N., DeLancey, E. R., McDermid, G. J., & Kariyeva, J. (2017). Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping. Remote Sensing, 9(12). https://doi.org/10.3390/rs9121315
  • Nofrizal, A. Y., Sonobe, R., Yamashita, H., Morita, A., & Ikka, T. (2022). Estimating chlorophyll content of Zizania latifolia with hyperspectral data and random forest. International Journal of Engineering and Geosciences, 7(3), 221–228. https://doi.org/10.26833/ijeg.953188
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Cai, Y., Fang, Y., Huang, F., & Fan, L. (2024). Case study on the optimal scaling factor for semantic segmentation of remote sensing image. 2024 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing, MIGARS 2024, 1–3. https://doi.org/10.1109/MIGARS61408.2024.10544785
  • Guo, J., Bai, Q., Guo, W., Bu, Z., & Zhang, W. (2022). Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Computers and Electronics in Agriculture, 193(August 2021), 106670. https://doi.org/10.1016/j.compag.2021.106670
  • Carranza, C., Nolet, C., Pezij, M., & van der Ploeg, M. (2021). Root zone soil moisture estimation with Random Forest. Journal of Hydrology, 593(December 2020), 125840. https://doi.org/10.1016/j.jhydrol.2020.125840
  • Menon, A., & Lim, J. (2017). Hidden potential carbon. Banking. https://openknowledge.fao.org
  • Report, I. S. (2023). Summary for Policymakers of the Intergovernmental Panel on Climate Change. https://doi:10.59327/IPCC/AR69789291691647.001
  • Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., & Anguela, T. P. (2008). Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sensing of Environment, 112(12), 4370–4379. https://doi.org/10.1016/j.rse.2008.08.004
  • Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171. https://doi.org/10.1038/nclimate2837
  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., … Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data. Remote Sensing of Environment, 247. https://doi.org/10.1016/j.rse.2020.111954
  • De Luca, G., Silva, J. M. N., & Modica, G. (2022). Short-term temporal and spatial analysis for post-fire vegetation regrowth characterization and mapping in a Mediterranean ecosystem using optical and SAR image time-series. Geocarto International, 37(27), 15428–15462. https://doi.org/10.1080/10106049.2022.2097482
  • Dai, J., Zhu, L., & Walker, J. (2023). Machine Learning Methods for 1 km Soil Moisture Retrieval from Sentinel-1: An Evaluation with Limited Training Samples. Proceedings of the IEEE Radar Conference, 1–5. https://doi.org/10.1109/RADAR54928.2023.10371043
  • Hussain, A., Niaz, R., Almazah, M. M. A., Al-Rezami, A. Y., Cheng, H., & Tariq, A. (2025). Utilizing Logistic Regression and Random Forest to Model Meteorological Drought Persistence Across Seasonal Transitions. Earth Systems and Environment. https://doi.org/10.1007/s41748-025-00682-3
  • Chen, P. Y., Chen, C. C., Kang, C., Liu, J. W., & Li, Y. H. (2025). Soil water content prediction across seasons using random forest based on precipitation-related data. Computers and Electronics in Agriculture, 230(September 2024), 109802. https://doi.org/10.1016/j.compag.2024.109802
  • Jiaxin, Q., Jie, Y., Weidong, S., Lingli, Z., Lei, S., & Chaoya, D. (2024). Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms. Computers and Electronics in Agriculture, 217(January), 108518. https://doi.org/10.1016/j.compag.2023.108518
There are 88 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Maryam Sadeghi 0009-0009-6745-7885

Khalil Valizadeh Kamran 0000-0003-4648-842X

Sadra Karimzadeh 0000-0000-0002-5645

Abolfazl Ghanbari 0000-0001-6225-0433

Saeed Samadianfard 0000-0002-6876-7182

Early Pub Date October 18, 2025
Publication Date December 14, 2025
Submission Date July 8, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2026 Volume: 11 Issue: 2

Cite

APA Sadeghi, M., Valizadeh Kamran, K., Karimzadeh, S., … Ghanbari, A. (2025). A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin. International Journal of Engineering and Geosciences, 11(2), 392-407. https://doi.org/10.26833/ijeg.1734366
AMA Sadeghi M, Valizadeh Kamran K, Karimzadeh S, Ghanbari A, Samadianfard S. A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin. IJEG. October 2025;11(2):392-407. doi:10.26833/ijeg.1734366
Chicago Sadeghi, Maryam, Khalil Valizadeh Kamran, Sadra Karimzadeh, Abolfazl Ghanbari, and Saeed Samadianfard. “A New Approach to Soil Moisture Estimation Based on Correlation Between SAR and Multispectral Indices and Seasonal Pattern of Soil Moisture Dynamics: A Case Study of Lake Urmia Basin”. International Journal of Engineering and Geosciences 11, no. 2 (October 2025): 392-407. https://doi.org/10.26833/ijeg.1734366.
EndNote Sadeghi M, Valizadeh Kamran K, Karimzadeh S, Ghanbari A, Samadianfard S (October 1, 2025) A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin. International Journal of Engineering and Geosciences 11 2 392–407.
IEEE M. Sadeghi, K. Valizadeh Kamran, S. Karimzadeh, A. Ghanbari, and S. Samadianfard, “A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin”, IJEG, vol. 11, no. 2, pp. 392–407, 2025, doi: 10.26833/ijeg.1734366.
ISNAD Sadeghi, Maryam et al. “A New Approach to Soil Moisture Estimation Based on Correlation Between SAR and Multispectral Indices and Seasonal Pattern of Soil Moisture Dynamics: A Case Study of Lake Urmia Basin”. International Journal of Engineering and Geosciences 11/2 (October2025), 392-407. https://doi.org/10.26833/ijeg.1734366.
JAMA Sadeghi M, Valizadeh Kamran K, Karimzadeh S, Ghanbari A, Samadianfard S. A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin. IJEG. 2025;11:392–407.
MLA Sadeghi, Maryam et al. “A New Approach to Soil Moisture Estimation Based on Correlation Between SAR and Multispectral Indices and Seasonal Pattern of Soil Moisture Dynamics: A Case Study of Lake Urmia Basin”. International Journal of Engineering and Geosciences, vol. 11, no. 2, 2025, pp. 392-07, doi:10.26833/ijeg.1734366.
Vancouver Sadeghi M, Valizadeh Kamran K, Karimzadeh S, Ghanbari A, Samadianfard S. A new approach to soil moisture estimation based on correlation between SAR and multispectral indices and seasonal pattern of soil moisture dynamics: a case study of Lake Urmia Basin. IJEG. 2025;11(2):392-407.