Research Article
BibTex RIS Cite

Year 2026, Volume: 11 Issue: 2, 336 - 351
https://doi.org/10.26833/ijeg.1744303

Abstract

References

  • Abbas, Z. Yang, G. Zhong, Y. and Zhao, Y. (2021). Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the Greater Bay Area, China. Land, 10(6),584. https://doi.org/10.3390/land10060584
  • Islam, I. Tonny, K. F. Hoque, M. Z. Abdullah, H. M. Khan, B. M. Islam, K. H. S. ... and Ferdush, J. (2024). Monitoring and prediction of land use land cover change of Chittagong Metropolitan City by CA-ANN model. International Journal of Environmental Science and Technology, 21(8),6275-6286. https://doi.org/10.1007/s13762-023-05436-0
  • Aghazadeh, F. Mashayekh, H. Akbari, M. A. Boroukanlou, S. Habibzadeh, N. Ghasemi, M. and Goswami, A. (2025). A GIRS-based analysis of urban green space losses with land-use changes and its relationship with surface urban heat island in the city of Tabriz. Advances in Space Research, 75(2),1804-1824. https://doi.org/10.1016/j.asr.2024.10.018
  • Yakup, A. E., & Ayazlı, İ. E. (2022). Investigating changes in land cover in high-density settlement areas by protected scenario. International Journal of Engineering and Geosciences, 7(1), 1-8.
  • Yamak, B., Yağcı, Z., Bilgilioğlu, B. B., & Çömert, R. (2021). Investigation of the effect of urbanization on land surface temperature example of Bursa. International Journal of Engineering and Geosciences, 6(1), 1-8.
  • Zarin, T. and Esraz-Ul-Zannat, M. (2023). Assessing the potential impacts of LULC change on urban air quality in Dhaka city. Ecological Indicators, 154, 110746. https://doi.org/10.1016/j.ecolind.2023.110746
  • Rahman, M. R. and Rahman, A. (2023). Urban green and blue spaces dynamics—A geospatial analysis using remote sensing, machine learning and landscape metrics in Rajshahi Metropolitan City, Bangladesh. In Advancements in urban environmental studies (pp. 137–159). GIScience and Geo-environmental Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-21587-2_10
  • Khorrami, B., Gunduz, O., Patel, N., … Ghouzlane, S. (2019). Land surface temperature anomalies in response to changes in forest cover. International Journal of Engineering and Geosciences, 4(3), 149-156. https://doi.org/10.26833/ijeg.549944.
  • Li, F. Zheng, W. Wang, Y. Liang, J. Xie, S. Guo, S. ... and Yu, C. (2019). Urban green space fragmentation and urbanization: A spatiotemporal perspective. Forests, 10(4), 333.https://doi.org/10.3390/f10040333 Liu, S. Zhang, X. Feng, Y. Xie, H. Jiang, L. and Lei, Z. (2021). Spatiotemporal dynamics of urban green space influenced by rapid urbanization and land use policies in shanghai. Forests 12 (4): 476. https://doi.org/10.3390/f12040476
  • Nawar, N. Sorker, R. Chowdhury, F. J. and Rahman, M. M. (2022). Present status and historical changes of urban green space in Dhaka city, Bangladesh: A remote sensing driven approach. Environmental Challenges,6,100425. https://doi.org/10.1016/j.envc.2021.100425
  • Naikoo, M. W. Rihan, M. and Ishtiaque, M. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3),347-359. https://doi.org/10.1016/j.jum.2020.05.004
  • Kavathekar, V. Tripathy, A. K. Chettri, S. K. and Bhanage, V. (2024). Evaluation of land use land cover dynamics and urban heat island effects over Mumbai metropolitan Region, India. International Journal of Environmental Science and Technology, 1-24.https://doi.org/10.1007/s13762-024-06266-4 Amini, S. Saber, M. Rabiei-Dastjerdi, H. and Homayouni, S. (2022). Urban land use and land cover change analysis using random forest classification of landsat time series. Remote Sensing,14(11),2654. https://doi.org/10.3390/rs14112654
  • Din, S. U. and Yamamoto, K. (2024). Urban spatial dynamics and geo-informatics prediction of Karachi from 1990–2050 using remote sensing and CA-ANN simulation. Earth Systems and Environment,8(3),849-868. https://doi.org/10.1007/s41748-024-00439-4
  • Bayramoğlu, Z., & Uzar, M. (2023). Performance analysis of rule-based classification and deep learning method for automatic road extraction. International Journal of Engineering and Geosciences, 8(1), 83-97. https://doi.org/10.26833/ijeg.1062250.
  • Zahir, I. L. M. Nuskiya, M. H. F. Sangasumana, V. P. Iyoob, A. L. and Ameer, M. L. F. (2024). Monitoring Urban Green Space Using Remote Sensing Derived-vegetation Indices in Colombo District, Sri Lanka. Procedia Computer Science, 236, 248-256. https://doi.org/10.1016/j.procs.2024.05.028
  • Zhao, W. Liu, D. Niu, J. He, J. and Xu, F. (2024). Spatial Heterogeneity Analysis of the Multidimensional Characteristics of Urban Green Spaces in China—A Study Based on 285 Prefecture-Level Cities. Land,13(7),1050. https://doi.org/10.3390/land13071050
  • Yu, Z. Wang, Y. Deng, J. Shen, Z. Wang, K. Zhu, J. and Gan, M. (2017). Dynamics of hierarchical urban green space patches and implications for management policy. Sensors, 17(6), 1304. https://doi.org/10.1007/s10708-020-10274-5
  • Nazombe, K. and Nambazo, O. (2023). Monitoring and assessment of urban green space loss and fragmentation using remote sensing data in the four cities of Malawi from 1986 to 2021. Scientific African,20,e01639. https://doi.org/10.1016/j.sciaf.2023.e01639
  • Li, X. Li, X. and Ma, X. (2022). Spatial optimization for urban green space (UGS) planning support using a heuristic approach. Applied Geography, 138, 102622. https://doi.org/10.1016/j.apgeog.2021.102622
  • Kim, J. Khouakhi, A. Corstanje, R. and Johnston, A. S. (2024). Greater local cooling effects of trees across globally distributed urban green spaces. Science of the Total Environment,911,168494. https://doi.org/10.1016/j.scitotenv.2023.168494
  • Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and urban planning, 125, 234-244. https://doi.org/10.1016/j.landurbplan.2014.01.017
  • Nieuwenhuijsen, M. J., Khreis, H., Triguero-Mas, M., Gascon, M., & Dadvand, P. (2017). Fifty shades of green: pathway to healthy urban living. Epidemiology, 28(1), 63-71.
  • Bhatta, B. (2009). Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. International Journal of Remote Sensing,30(18),4733-4746.https://doi.org/10.1080/01431160802651967
  • Halder, B. Banik, P. and Bandyopadhyay, J. (2021). Mapping and monitoring land dynamic due to urban expansion using geospatial techniques on South Kolkata. Safety in Extreme Environments, 3(1), 27-42. https://doi.org/10.1007/s42797-021-00032-2
  • Ray, R. Das, A. Hasan, M. S. U. Aldrees, A. Islam, S. Khan, M. A. and Lama, G. F. C. (2023). Quantitative analysis of land use and land cover dynamics using geoinformatics techniques: A case study on Kolkata metropolitan development authority (KMDA) in West Bengal, India. Remote Sensing, 15(4), 959. https://doi.org/10.3390/rs15040959
  • Mukherjee, S. Bebermeier, W. and Schütt, B. (2018). An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata.Land,7(3),91. https://doi.org/10.3390/land7030091
  • Singh, S. K. Mustak, S. Srivastava, P. K. Szabó, S. and Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2, 61-78. https://doi.org/10.1007/s40710-015-0062-x
  • Zadbagher, E. Becek, K. and Berberoglu, S. (2018). Modeling land use/land cover change using remote sensing and geographic information systems: case study of the Seyhan Basin, Turkey. Environmental monitoring and assessment, 190, 1-15. https://doi.org/10.1007/s10661-018-6877-y
  • Mehra, N. and Swain, J. B. (2024). Assessment of land use land cover change and its effects using artificial neural network-based cellular automation. Journal of Engineering and Applied Science,71(1),70. https://doi.org/10.1186/s44147-024-00402-0
  • Osman, M. A. Abdel-Rahman, E. M. Onono, J. O. Olaka, L. A. Elhag, M. M. Adan, M. and Tonnang, H. E. (2023). Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA-artificial neural network model. PLoS One, 18(7), e0288694. https://doi.org/10.1371/journal.pone.0288694
  • Ahady, A. B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7(1), 24-31.
  • Qu, L. A. Chen, Z. Li, M. Zhi, J. and Wang, H. (2021). Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google Earth engine. Remote Sensing, 13(3), 453. https://doi.org/10.3390/rs13030453
  • Abdelsamie, E. A. Mustafa, A. R. A. El-Sorogy, A. S. Maswada, H. F. Almadani, S. A. Shokr, M. S. ... and Meroño de Larriva, J. E. (2024). Current and potential land use/land cover (LULC) scenarios in dry lands using a CA-Markov simulation model and the Classification and Regression Tree (CART) method: A cloud-based Google Earth Engine (GEE) approach. Sustainability, 16(24), 11130. https://doi.org/10.3390/su162411130
  • Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239-250
  • Lian, Z. and Feng, X. (2022). Urban green space pattern in core cities of the greater bay area based on morphological spatial pattern analysis. Sustainability,14(19),12365. https://doi.org/10.3390/su141912365
  • Pramanik, S. and Punia, M. (2019). Assessment of green space cooling effects in dense urban landscape: A case study of Delhi, India. Modeling Earth Systems and Environment, 5, 867-884. https://doi.org/10.1007/s40808-019-00573-3
  • Altunel, A. O., Çağlar, S., & Açıkgöz Altunel, T. (2021). Determining the habitat fragmentation thru geoscience capabilities in Turkey: A case study of wildlife refuges. International Journal of Engineering and Geosciences, 6(2), 104-116. https://doi.org/10.26833/ijeg.712549
  • Zhong, Q. Li, Z. Zhu, J. and Yuan, C. (2025). Revealing Multiscale and Nonlinear Effects of Urban Green Spaces on Heat Islands in High-Density Cities: Insights from MSPA and Machine Learning. Sustainable Cities and Society, 106173. https://doi.org/10.1016/j.scs.2025.106173
  • Chen, M. Sun, Y. Yang, B. and Jiang, J. (2024). MSPA-based green space morphological pattern and its spatiotemporal influence on land surface temperature. Heliyon,10(11),e31363. https://doi.org/10.1016/j.heliyon.2024.e31363
  • Gao, Y. Zhang, Y. and Li, X. (2022). Urban Green Space Pattern in Core Cities of the Greater Bay Area Based on Morphological Spatial Pattern Analysis. Sustainability, 14(19), 12365.https://doi.org/10.3390/su141912365
  • Ahmad, H. Abdallah, M. Jose, F. Elzain, H. E. Bhuyan, M. S. Shoemaker, D. J. and Selvam, S. (2023). Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area. Ecological informatics,78,102324. https://doi.org/10.1016/j.ecoinf.2023.102324
  • Bag, A., Sharma, A., & Pal, S. (2024). Studying urbanization pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain model. International Journal of Engineering and Geosciences, 9(3), 356-367.
  • Saputra, M. H. and Lee, H. S. (2019). Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 11(11), 3024.
  • Klanreungsang, B. and Nilsonthi, P. (2024). Urban Land Use Changes Simulation with CA-ANN Model: A Case Study of Mae Sot District, Tak Province, Thailand. International Journal of Geoinformatics, 20(6), 69-81: https://doi.org/10.52939/ijg.v20i6.3339
  • Sharma, R. Pradhan, L. Kumari, M. Bhattacharya, P. Mishra, V. N. and Kumar, D. (2024). Spatio-Temporal Assessment of Urban Carbon Storage and Its Dynamics Using InVEST Model. Land, 13(9), 1387. https://doi.org/10.3390/land13091387
  • Hasnine, M. and Rukhsana. (2023). Spatial and temporal analysis of land use and land cover change in and around Kolkata City, India, using geospatial techniques. Journal of the Indian Society of Remote Sensing, 51(5), 1037-1056. https://doi.org/10.1007/s12524-023-01669-1
  • Dinda, S. Chatterjee, N. D. and Ghosh, S. (2021). Modelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model. Geocarto International, 37(22), 6551-6578. https://doi.org/10.1080/10106049.2021.1952315
  • Das, S. Adhikary, P. P. Shit, P. K. and Bera, B. (2022). Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis. Geocarto International, 37(25), 7800-7818. https://doi.org/10.1080/10106049.2021.1985174
  • Mondal, B. Das, D. N. and Bhatta, B. (2017). Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto international, 32(4), 401-419. https://doi.org/10.1080/10106049.2016.1155656
  • Kaya, Y., H. İ. Şenol, A. Y. Yiğit, and M. Yakar. 2023. “Car Detection from Very High-Resolution UAV Images Using Deep Learning Algorithms.” Photogrammetric Engineering & Remote Sensing 89 (2): 117–123. https://doi.org/10.14358/PERS.22-00101R2
  • Orhan, O. and Yakar, M. (2016) Investigating Land Surface Temperature Changes Using Landsat Data in Konya, Turkey, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 285–289, https://doi.org/10.5194/isprs-archives-XLI-B8-285-2016.
  • Census of India 2011. Government of India. Archived February 5, 2025, from http://censusindia.gov.in/DigitalLibrary/Archive_home.aspx
  • Chatterjee, U. and Majumdar, S. (2022). Impact of land use change and rapid urbanization on urban heat island in Kolkata city: A remote sensing-based perspective. Journal of urban Management, 11(1), 59-71. https://doi.org/10.1016/j.jum.2021.09.002
  • Haque, M. S., & Singh, R. B. (2017). Air pollution and human health in Kolkata, India: A case study. Climate, 5(4), 77.
  • Guha, S., & Govil, H. (2021). Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. International Journal of Engineering and Geosciences, 6(3), 165-173. https://doi.org/10.26833/ijeg.821730.
  • Floreano, I. X. and de Moraes, L. A. F. (2021). Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environmental Monitoring and Assessment, 193(4), 239. https://doi.org/10.1007/s10661-021-09016-y
  • Waleed, M. Sajjad, M. Shazil, M. S. Tariq, M. and Alam, M. T. (2023). Machine learning-based spatial-temporal assessment and change transition analysis of wetlands: An application of Google Earth Engine in Sylhet, Bangladesh (1985–2022). Ecological Informatics, 75, 102075. https://doi.org/10.1016/j.ecoinf.2023.102075
  • El-bouhalı, A., Amyay, M., & Ech-chahdı, K. E. O. (2024). Detection of irrigated crops using Landsat 8 images: A methodology based on fieldwork and spectral reflectance analysis. International Journal of Engineering and Geosciences, 10(1), 1-13. https://doi.org/10.26833/ijeg.1483206
  • Kanchan, A. Nitivattananon, V. Tripathi, N. K. Winijkul, E. and Mandadi, R. R. (2024). A Spatio-Temporal Examination of Land Use and Land Cover Changes in Smart Cities of the Delhi–Mumbai Industrial Corridor. Land, 13(7), 957.https://doi.org/10.3390/land13070957Land, 13(7), 957.
  • Zafar, Z. Zubair, M. Zha, Y. Fahd, S. and Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2),216-226. https://doi.org/10.1016/j.ejrs.2024.03.003
  • Halefom, A. Teshome, A. Sisay, E. and Ahmad, I. (2018). Dynamics of land use and land cover change using remote sensing and GIS: a case study of Debre Tabor Town, South Gondar, Ethiopia. Journal of Geographic Information System, 10(2), 165-174.https://doi.org/10.4236/jgis.2018.102008
  • Gómez-Fernández, D. López, R. S. Zabaleta-Santisteban, J. A. Medina-Medina, A. J. Gonas, M. Silva-López, J. O. ... and Rojas-Briceno, N. B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82, 102738.
  • Abdullah, S. Adnan, M. S. G. Barua, D. Murshed, M. M. Kabir, Z. Chowdhury, M. B. H. ... and Dewan, A. (2022). Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecological Informatics,70,101730. https://doi.org/10.1016/j.ecoinf.2022.101730
  • Yang, Z. Fang, C. Li, G. and Mu, X. (2021). Integrating multiple semantics data to assess the dynamic change of urban green space in Beijing, China. International Journal of Applied Earth Observation and Geoinformation, 103, 102479. https://doi.org/10.1016/j.jag.2021.102479
  • Al Kalbani, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23. https://doi.org/10.26833/ijeg.857971.
  • Yağmur, N., Tanık, A., Tuzcu, A., … Musaoğlu, N. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120-129. https://doi.org/10.26833/ijeg.638669.
  • Mwakapuja, F. Liwa, E. and Kashaigili, J. (2013). Usage of indices for extraction of built-up areas and vegetation features from Landsat TM image: A case of Dar Es Salaam and Kisarawe peri-urban areas, Tanzania. International Journal of Agriculture and Forestry, 3(7), 273–283. https://doi.org/10.5923/j.ijaf.20130307.01
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2023). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367–382. https://doi.org/10.1080/00396265.2023.2257969
  • Zhao, Z. Islam, F. Waseem, L. A. Tariq, A. Nawaz, M. Islam, I. U. ... and Hatamleh, W. A. (2024). Comparison of three machine learning algorithms using google earth engine for land use land cover classification. Rangeland ecology and management, 92, 129-137. https://doi.org/10.1016/j.rama.2023.10.007
  • Kebede, T. A. Hailu, B. T. and Suryabhagavan, K. V. (2022). Evaluation of spectral built-up indices for impervious surface extraction using Sentinel-2A MSI imageries: A case of Addis Ababa city, Ethiopia. Environmental Challenges, 8, 100568. https://doi.org/10.1016/j.envc.2022.100568
  • Hussain, K. Mehmood, K. Yujun, S. Badshah, T. Anees, S. A. Shahzad, F. Nooruddin, Ali, J. Bilal, M. (2024). Analysing LULC transformations using remote sensing data: insights from a multilayer perceptron neural network approach. Annals of GIS,1-28. https://doi.org/10.1080/19475683.2024.2343399.
  • Roy, K. C. Soren, D. D. L. and Biswas, B. (2024). Land-use/cover change and future prediction by integrating the ML techniques of random forest and CA-Markov chain model of the Ganges alluvial tract of Eastern India. Environment, Development andSustainability,1-28. https://doi.org/10.1007/s10668-024-05545-x
  • Altunel, A. O., & Çelik, D. A. (2025). Comparison of SAR and Optical derived Data used in Forest Cover Detection; PALSAR-FNF vs. ESRI LAND-COVER over North Central Türkiye. International Journal of Environmental Science and Technology, 22(5), 3641-3654.https://doi.org/10.1007/s13762-024-06164-9
  • Çelik, D. A., & Altunel, A. O. (2025). Is Dynamic World a Contender in Global Land-Cover Making Race? A Swift Field Assessment from Kastamonu, Türkiye. The Egyptian Journal of Remote Sensing and Space Sciences, 28(2), 205-213. https://doi.org/10.1016/j.ejrs.2025.04.002
  • Soille, P. and Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern recognition letters, 30(4), 456-459. https://doi.org/10.1016/j.patrec.2008.10.015
  • Ma, Y. Zheng, X. Liu, M. Liu, D. Ai, G. and Chen, X. (2022). Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China. Scientific Reports,12(1),10702. https://doi.org/10.1038/s41598-022-14613-z
  • Sun, W. Ren, J. Zhai, J. and Li, W. (2023). ‘Just green enough’in urban renewal: A multifunctional and pragmatic approach in realizing multiscale urban green space optimization in built-up residential areas. Urban Forestry and Urban Greening, 82, 127891.https://doi.org/10.1016/j.ufug.2023.127891
  • Değermenci, A. S. (2023). Spatio-temporal change analysis and prediction of land use and land cover changes using CA-ANN model. Environmental Monitoring and Assessment,195(10),1229. https://doi.org/10.1007/s10661-023-11848-9
  • Morsy, S., & Hadı, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272-282. https://doi.org/10.26833/ijeg.978961.
  • Kasahun, M. and Legesse, A. (2024). Machine learning for urban land use/cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla town. Heliyon,10(20). https://doi.org/10.1016/j.heliyon.2024.e39146
  • Bhaskar, P. (2012). Urbanization and changing green spaces in Indian cities (Case study–City of Pune). International Journal of Geology, Earth and Environmental Sciences, 2(2), 148-156.
  • Bi, S. Chen, M. and Dai, F. (2022). The impact of urban green space morphology on PM2. 5 pollution in Wuhan, China: A novel multiscale spatiotemporal analytical framework. Building and Environment,221,109340. https://doi.org/10.1016/j.buildenv.2022.109340
  • Baig, M. F. Mustafa, M. R. U. Baig, I. Takaijudin, H. B. and Zeshan, M. T. (2022). Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water, 14(3),402. https://doi.org/10.3390/w14030402
  • Aneesha Satya, B. Shashi, M. and Deva, P. (2020). Future land use land cover scenario simulation using open-source GIS for the city of Warangal, Telangana, India. Applied Geomatics, 12(3),281-290.https://doi.org/10.1007/s12518-020-00298-4
  • Yatoo, S.A. Sahu, P. Kalubarme, M.H. et al. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal 87,765–786(2022). https://doi.org/10.1007/s10708-020-10274-5

Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques

Year 2026, Volume: 11 Issue: 2, 336 - 351
https://doi.org/10.26833/ijeg.1744303

Abstract

Rapid urbanization and a growing population of over 4.5 million have caused significant changes in land use and land cover (LULC) in Kolkata, leading to the degradation and loss of urban green spaces (UGS), which are important for both the environment and human well-being.This study aims to monitor, analyse, the impact of LULC changes on UGS in Kolkata by integrating geospatial and machine learning (ML) techniques. Multi-temporal Landsat 5 and 8 satellite imagery, enhanced with spectral indices were classified using Support Vector Machine (SVM), Random Forest (RF), and Classification and Regression Trees (CART) within the Google Earth Engine (GEE). Morphological Spatial Pattern Analysis (MSPA) was employed to evaluate the structural transformation in UGS. Additionally, future LULC scenarios for 2031 and 2041 were simulated using Cellular Automata–Artificial Neural Network (CA–ANN) model employed through the MOLUSCE plugin in QGIS. The RF classifier found highest accuracy (98%) with Kappa coefficient of 0.97. From 1991 to 2021, urban impervious surfaces (UIS) increased from 77.17 km² to 123.96 km² (25.10%), largely replacing UGS, which sank from 100.95 km² to 54.12 km² (25.09%). MSPA revealed a noticeable decline in core pattern of UGS from 48.65 km² to 16.19 km², mainly in southern and eastern parts of Kolkata. Further, reduced connectivity in perforation and bridge patterns are observed. Future projections show continuous UIS increase and green space loss, with UIS growing to 128.30 km² and UGS shrinking to 50.64 km² by 2041. The study proposes the implementation of sustainable urban planning policies aimed at preserving and restoring green spaces, promoting urban greening initiatives such as pocket parks, vertical gardens and rooftop greenery, and encouraging public participation to enhance ecological resilience — supporting Sustainable Development Goal (SDG) 11 and SDG 15.

Ethical Statement

This study did not require ethical approval as it relied solely on secondary data sources that are publicly available.

References

  • Abbas, Z. Yang, G. Zhong, Y. and Zhao, Y. (2021). Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the Greater Bay Area, China. Land, 10(6),584. https://doi.org/10.3390/land10060584
  • Islam, I. Tonny, K. F. Hoque, M. Z. Abdullah, H. M. Khan, B. M. Islam, K. H. S. ... and Ferdush, J. (2024). Monitoring and prediction of land use land cover change of Chittagong Metropolitan City by CA-ANN model. International Journal of Environmental Science and Technology, 21(8),6275-6286. https://doi.org/10.1007/s13762-023-05436-0
  • Aghazadeh, F. Mashayekh, H. Akbari, M. A. Boroukanlou, S. Habibzadeh, N. Ghasemi, M. and Goswami, A. (2025). A GIRS-based analysis of urban green space losses with land-use changes and its relationship with surface urban heat island in the city of Tabriz. Advances in Space Research, 75(2),1804-1824. https://doi.org/10.1016/j.asr.2024.10.018
  • Yakup, A. E., & Ayazlı, İ. E. (2022). Investigating changes in land cover in high-density settlement areas by protected scenario. International Journal of Engineering and Geosciences, 7(1), 1-8.
  • Yamak, B., Yağcı, Z., Bilgilioğlu, B. B., & Çömert, R. (2021). Investigation of the effect of urbanization on land surface temperature example of Bursa. International Journal of Engineering and Geosciences, 6(1), 1-8.
  • Zarin, T. and Esraz-Ul-Zannat, M. (2023). Assessing the potential impacts of LULC change on urban air quality in Dhaka city. Ecological Indicators, 154, 110746. https://doi.org/10.1016/j.ecolind.2023.110746
  • Rahman, M. R. and Rahman, A. (2023). Urban green and blue spaces dynamics—A geospatial analysis using remote sensing, machine learning and landscape metrics in Rajshahi Metropolitan City, Bangladesh. In Advancements in urban environmental studies (pp. 137–159). GIScience and Geo-environmental Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-21587-2_10
  • Khorrami, B., Gunduz, O., Patel, N., … Ghouzlane, S. (2019). Land surface temperature anomalies in response to changes in forest cover. International Journal of Engineering and Geosciences, 4(3), 149-156. https://doi.org/10.26833/ijeg.549944.
  • Li, F. Zheng, W. Wang, Y. Liang, J. Xie, S. Guo, S. ... and Yu, C. (2019). Urban green space fragmentation and urbanization: A spatiotemporal perspective. Forests, 10(4), 333.https://doi.org/10.3390/f10040333 Liu, S. Zhang, X. Feng, Y. Xie, H. Jiang, L. and Lei, Z. (2021). Spatiotemporal dynamics of urban green space influenced by rapid urbanization and land use policies in shanghai. Forests 12 (4): 476. https://doi.org/10.3390/f12040476
  • Nawar, N. Sorker, R. Chowdhury, F. J. and Rahman, M. M. (2022). Present status and historical changes of urban green space in Dhaka city, Bangladesh: A remote sensing driven approach. Environmental Challenges,6,100425. https://doi.org/10.1016/j.envc.2021.100425
  • Naikoo, M. W. Rihan, M. and Ishtiaque, M. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3),347-359. https://doi.org/10.1016/j.jum.2020.05.004
  • Kavathekar, V. Tripathy, A. K. Chettri, S. K. and Bhanage, V. (2024). Evaluation of land use land cover dynamics and urban heat island effects over Mumbai metropolitan Region, India. International Journal of Environmental Science and Technology, 1-24.https://doi.org/10.1007/s13762-024-06266-4 Amini, S. Saber, M. Rabiei-Dastjerdi, H. and Homayouni, S. (2022). Urban land use and land cover change analysis using random forest classification of landsat time series. Remote Sensing,14(11),2654. https://doi.org/10.3390/rs14112654
  • Din, S. U. and Yamamoto, K. (2024). Urban spatial dynamics and geo-informatics prediction of Karachi from 1990–2050 using remote sensing and CA-ANN simulation. Earth Systems and Environment,8(3),849-868. https://doi.org/10.1007/s41748-024-00439-4
  • Bayramoğlu, Z., & Uzar, M. (2023). Performance analysis of rule-based classification and deep learning method for automatic road extraction. International Journal of Engineering and Geosciences, 8(1), 83-97. https://doi.org/10.26833/ijeg.1062250.
  • Zahir, I. L. M. Nuskiya, M. H. F. Sangasumana, V. P. Iyoob, A. L. and Ameer, M. L. F. (2024). Monitoring Urban Green Space Using Remote Sensing Derived-vegetation Indices in Colombo District, Sri Lanka. Procedia Computer Science, 236, 248-256. https://doi.org/10.1016/j.procs.2024.05.028
  • Zhao, W. Liu, D. Niu, J. He, J. and Xu, F. (2024). Spatial Heterogeneity Analysis of the Multidimensional Characteristics of Urban Green Spaces in China—A Study Based on 285 Prefecture-Level Cities. Land,13(7),1050. https://doi.org/10.3390/land13071050
  • Yu, Z. Wang, Y. Deng, J. Shen, Z. Wang, K. Zhu, J. and Gan, M. (2017). Dynamics of hierarchical urban green space patches and implications for management policy. Sensors, 17(6), 1304. https://doi.org/10.1007/s10708-020-10274-5
  • Nazombe, K. and Nambazo, O. (2023). Monitoring and assessment of urban green space loss and fragmentation using remote sensing data in the four cities of Malawi from 1986 to 2021. Scientific African,20,e01639. https://doi.org/10.1016/j.sciaf.2023.e01639
  • Li, X. Li, X. and Ma, X. (2022). Spatial optimization for urban green space (UGS) planning support using a heuristic approach. Applied Geography, 138, 102622. https://doi.org/10.1016/j.apgeog.2021.102622
  • Kim, J. Khouakhi, A. Corstanje, R. and Johnston, A. S. (2024). Greater local cooling effects of trees across globally distributed urban green spaces. Science of the Total Environment,911,168494. https://doi.org/10.1016/j.scitotenv.2023.168494
  • Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and urban planning, 125, 234-244. https://doi.org/10.1016/j.landurbplan.2014.01.017
  • Nieuwenhuijsen, M. J., Khreis, H., Triguero-Mas, M., Gascon, M., & Dadvand, P. (2017). Fifty shades of green: pathway to healthy urban living. Epidemiology, 28(1), 63-71.
  • Bhatta, B. (2009). Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. International Journal of Remote Sensing,30(18),4733-4746.https://doi.org/10.1080/01431160802651967
  • Halder, B. Banik, P. and Bandyopadhyay, J. (2021). Mapping and monitoring land dynamic due to urban expansion using geospatial techniques on South Kolkata. Safety in Extreme Environments, 3(1), 27-42. https://doi.org/10.1007/s42797-021-00032-2
  • Ray, R. Das, A. Hasan, M. S. U. Aldrees, A. Islam, S. Khan, M. A. and Lama, G. F. C. (2023). Quantitative analysis of land use and land cover dynamics using geoinformatics techniques: A case study on Kolkata metropolitan development authority (KMDA) in West Bengal, India. Remote Sensing, 15(4), 959. https://doi.org/10.3390/rs15040959
  • Mukherjee, S. Bebermeier, W. and Schütt, B. (2018). An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata.Land,7(3),91. https://doi.org/10.3390/land7030091
  • Singh, S. K. Mustak, S. Srivastava, P. K. Szabó, S. and Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2, 61-78. https://doi.org/10.1007/s40710-015-0062-x
  • Zadbagher, E. Becek, K. and Berberoglu, S. (2018). Modeling land use/land cover change using remote sensing and geographic information systems: case study of the Seyhan Basin, Turkey. Environmental monitoring and assessment, 190, 1-15. https://doi.org/10.1007/s10661-018-6877-y
  • Mehra, N. and Swain, J. B. (2024). Assessment of land use land cover change and its effects using artificial neural network-based cellular automation. Journal of Engineering and Applied Science,71(1),70. https://doi.org/10.1186/s44147-024-00402-0
  • Osman, M. A. Abdel-Rahman, E. M. Onono, J. O. Olaka, L. A. Elhag, M. M. Adan, M. and Tonnang, H. E. (2023). Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA-artificial neural network model. PLoS One, 18(7), e0288694. https://doi.org/10.1371/journal.pone.0288694
  • Ahady, A. B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7(1), 24-31.
  • Qu, L. A. Chen, Z. Li, M. Zhi, J. and Wang, H. (2021). Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google Earth engine. Remote Sensing, 13(3), 453. https://doi.org/10.3390/rs13030453
  • Abdelsamie, E. A. Mustafa, A. R. A. El-Sorogy, A. S. Maswada, H. F. Almadani, S. A. Shokr, M. S. ... and Meroño de Larriva, J. E. (2024). Current and potential land use/land cover (LULC) scenarios in dry lands using a CA-Markov simulation model and the Classification and Regression Tree (CART) method: A cloud-based Google Earth Engine (GEE) approach. Sustainability, 16(24), 11130. https://doi.org/10.3390/su162411130
  • Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239-250
  • Lian, Z. and Feng, X. (2022). Urban green space pattern in core cities of the greater bay area based on morphological spatial pattern analysis. Sustainability,14(19),12365. https://doi.org/10.3390/su141912365
  • Pramanik, S. and Punia, M. (2019). Assessment of green space cooling effects in dense urban landscape: A case study of Delhi, India. Modeling Earth Systems and Environment, 5, 867-884. https://doi.org/10.1007/s40808-019-00573-3
  • Altunel, A. O., Çağlar, S., & Açıkgöz Altunel, T. (2021). Determining the habitat fragmentation thru geoscience capabilities in Turkey: A case study of wildlife refuges. International Journal of Engineering and Geosciences, 6(2), 104-116. https://doi.org/10.26833/ijeg.712549
  • Zhong, Q. Li, Z. Zhu, J. and Yuan, C. (2025). Revealing Multiscale and Nonlinear Effects of Urban Green Spaces on Heat Islands in High-Density Cities: Insights from MSPA and Machine Learning. Sustainable Cities and Society, 106173. https://doi.org/10.1016/j.scs.2025.106173
  • Chen, M. Sun, Y. Yang, B. and Jiang, J. (2024). MSPA-based green space morphological pattern and its spatiotemporal influence on land surface temperature. Heliyon,10(11),e31363. https://doi.org/10.1016/j.heliyon.2024.e31363
  • Gao, Y. Zhang, Y. and Li, X. (2022). Urban Green Space Pattern in Core Cities of the Greater Bay Area Based on Morphological Spatial Pattern Analysis. Sustainability, 14(19), 12365.https://doi.org/10.3390/su141912365
  • Ahmad, H. Abdallah, M. Jose, F. Elzain, H. E. Bhuyan, M. S. Shoemaker, D. J. and Selvam, S. (2023). Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area. Ecological informatics,78,102324. https://doi.org/10.1016/j.ecoinf.2023.102324
  • Bag, A., Sharma, A., & Pal, S. (2024). Studying urbanization pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain model. International Journal of Engineering and Geosciences, 9(3), 356-367.
  • Saputra, M. H. and Lee, H. S. (2019). Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 11(11), 3024.
  • Klanreungsang, B. and Nilsonthi, P. (2024). Urban Land Use Changes Simulation with CA-ANN Model: A Case Study of Mae Sot District, Tak Province, Thailand. International Journal of Geoinformatics, 20(6), 69-81: https://doi.org/10.52939/ijg.v20i6.3339
  • Sharma, R. Pradhan, L. Kumari, M. Bhattacharya, P. Mishra, V. N. and Kumar, D. (2024). Spatio-Temporal Assessment of Urban Carbon Storage and Its Dynamics Using InVEST Model. Land, 13(9), 1387. https://doi.org/10.3390/land13091387
  • Hasnine, M. and Rukhsana. (2023). Spatial and temporal analysis of land use and land cover change in and around Kolkata City, India, using geospatial techniques. Journal of the Indian Society of Remote Sensing, 51(5), 1037-1056. https://doi.org/10.1007/s12524-023-01669-1
  • Dinda, S. Chatterjee, N. D. and Ghosh, S. (2021). Modelling the future vulnerability of urban green space for priority-based management and green prosperity strategy planning in Kolkata, India: a PSR-based analysis using AHP-FCE and ANN-Markov model. Geocarto International, 37(22), 6551-6578. https://doi.org/10.1080/10106049.2021.1952315
  • Das, S. Adhikary, P. P. Shit, P. K. and Bera, B. (2022). Urban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis. Geocarto International, 37(25), 7800-7818. https://doi.org/10.1080/10106049.2021.1985174
  • Mondal, B. Das, D. N. and Bhatta, B. (2017). Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto international, 32(4), 401-419. https://doi.org/10.1080/10106049.2016.1155656
  • Kaya, Y., H. İ. Şenol, A. Y. Yiğit, and M. Yakar. 2023. “Car Detection from Very High-Resolution UAV Images Using Deep Learning Algorithms.” Photogrammetric Engineering & Remote Sensing 89 (2): 117–123. https://doi.org/10.14358/PERS.22-00101R2
  • Orhan, O. and Yakar, M. (2016) Investigating Land Surface Temperature Changes Using Landsat Data in Konya, Turkey, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 285–289, https://doi.org/10.5194/isprs-archives-XLI-B8-285-2016.
  • Census of India 2011. Government of India. Archived February 5, 2025, from http://censusindia.gov.in/DigitalLibrary/Archive_home.aspx
  • Chatterjee, U. and Majumdar, S. (2022). Impact of land use change and rapid urbanization on urban heat island in Kolkata city: A remote sensing-based perspective. Journal of urban Management, 11(1), 59-71. https://doi.org/10.1016/j.jum.2021.09.002
  • Haque, M. S., & Singh, R. B. (2017). Air pollution and human health in Kolkata, India: A case study. Climate, 5(4), 77.
  • Guha, S., & Govil, H. (2021). Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. International Journal of Engineering and Geosciences, 6(3), 165-173. https://doi.org/10.26833/ijeg.821730.
  • Floreano, I. X. and de Moraes, L. A. F. (2021). Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environmental Monitoring and Assessment, 193(4), 239. https://doi.org/10.1007/s10661-021-09016-y
  • Waleed, M. Sajjad, M. Shazil, M. S. Tariq, M. and Alam, M. T. (2023). Machine learning-based spatial-temporal assessment and change transition analysis of wetlands: An application of Google Earth Engine in Sylhet, Bangladesh (1985–2022). Ecological Informatics, 75, 102075. https://doi.org/10.1016/j.ecoinf.2023.102075
  • El-bouhalı, A., Amyay, M., & Ech-chahdı, K. E. O. (2024). Detection of irrigated crops using Landsat 8 images: A methodology based on fieldwork and spectral reflectance analysis. International Journal of Engineering and Geosciences, 10(1), 1-13. https://doi.org/10.26833/ijeg.1483206
  • Kanchan, A. Nitivattananon, V. Tripathi, N. K. Winijkul, E. and Mandadi, R. R. (2024). A Spatio-Temporal Examination of Land Use and Land Cover Changes in Smart Cities of the Delhi–Mumbai Industrial Corridor. Land, 13(7), 957.https://doi.org/10.3390/land13070957Land, 13(7), 957.
  • Zafar, Z. Zubair, M. Zha, Y. Fahd, S. and Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2),216-226. https://doi.org/10.1016/j.ejrs.2024.03.003
  • Halefom, A. Teshome, A. Sisay, E. and Ahmad, I. (2018). Dynamics of land use and land cover change using remote sensing and GIS: a case study of Debre Tabor Town, South Gondar, Ethiopia. Journal of Geographic Information System, 10(2), 165-174.https://doi.org/10.4236/jgis.2018.102008
  • Gómez-Fernández, D. López, R. S. Zabaleta-Santisteban, J. A. Medina-Medina, A. J. Gonas, M. Silva-López, J. O. ... and Rojas-Briceno, N. B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82, 102738.
  • Abdullah, S. Adnan, M. S. G. Barua, D. Murshed, M. M. Kabir, Z. Chowdhury, M. B. H. ... and Dewan, A. (2022). Urban green and blue space changes: A spatiotemporal evaluation of impacts on ecosystem service value in Bangladesh. Ecological Informatics,70,101730. https://doi.org/10.1016/j.ecoinf.2022.101730
  • Yang, Z. Fang, C. Li, G. and Mu, X. (2021). Integrating multiple semantics data to assess the dynamic change of urban green space in Beijing, China. International Journal of Applied Earth Observation and Geoinformation, 103, 102479. https://doi.org/10.1016/j.jag.2021.102479
  • Al Kalbani, K., & Rahman, A. A. (2022). 3D city model for monitoring flash flood risks in Salalah, Oman. International Journal of Engineering and Geosciences, 7(1), 17-23. https://doi.org/10.26833/ijeg.857971.
  • Yağmur, N., Tanık, A., Tuzcu, A., … Musaoğlu, N. (2020). Opportunities provided by remote sensing data for watershed management: example of Konya Closed Basin. International Journal of Engineering and Geosciences, 5(3), 120-129. https://doi.org/10.26833/ijeg.638669.
  • Mwakapuja, F. Liwa, E. and Kashaigili, J. (2013). Usage of indices for extraction of built-up areas and vegetation features from Landsat TM image: A case of Dar Es Salaam and Kisarawe peri-urban areas, Tanzania. International Journal of Agriculture and Forestry, 3(7), 273–283. https://doi.org/10.5923/j.ijaf.20130307.01
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., & Yakar, M. (2023). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 56(397), 367–382. https://doi.org/10.1080/00396265.2023.2257969
  • Zhao, Z. Islam, F. Waseem, L. A. Tariq, A. Nawaz, M. Islam, I. U. ... and Hatamleh, W. A. (2024). Comparison of three machine learning algorithms using google earth engine for land use land cover classification. Rangeland ecology and management, 92, 129-137. https://doi.org/10.1016/j.rama.2023.10.007
  • Kebede, T. A. Hailu, B. T. and Suryabhagavan, K. V. (2022). Evaluation of spectral built-up indices for impervious surface extraction using Sentinel-2A MSI imageries: A case of Addis Ababa city, Ethiopia. Environmental Challenges, 8, 100568. https://doi.org/10.1016/j.envc.2022.100568
  • Hussain, K. Mehmood, K. Yujun, S. Badshah, T. Anees, S. A. Shahzad, F. Nooruddin, Ali, J. Bilal, M. (2024). Analysing LULC transformations using remote sensing data: insights from a multilayer perceptron neural network approach. Annals of GIS,1-28. https://doi.org/10.1080/19475683.2024.2343399.
  • Roy, K. C. Soren, D. D. L. and Biswas, B. (2024). Land-use/cover change and future prediction by integrating the ML techniques of random forest and CA-Markov chain model of the Ganges alluvial tract of Eastern India. Environment, Development andSustainability,1-28. https://doi.org/10.1007/s10668-024-05545-x
  • Altunel, A. O., & Çelik, D. A. (2025). Comparison of SAR and Optical derived Data used in Forest Cover Detection; PALSAR-FNF vs. ESRI LAND-COVER over North Central Türkiye. International Journal of Environmental Science and Technology, 22(5), 3641-3654.https://doi.org/10.1007/s13762-024-06164-9
  • Çelik, D. A., & Altunel, A. O. (2025). Is Dynamic World a Contender in Global Land-Cover Making Race? A Swift Field Assessment from Kastamonu, Türkiye. The Egyptian Journal of Remote Sensing and Space Sciences, 28(2), 205-213. https://doi.org/10.1016/j.ejrs.2025.04.002
  • Soille, P. and Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern recognition letters, 30(4), 456-459. https://doi.org/10.1016/j.patrec.2008.10.015
  • Ma, Y. Zheng, X. Liu, M. Liu, D. Ai, G. and Chen, X. (2022). Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China. Scientific Reports,12(1),10702. https://doi.org/10.1038/s41598-022-14613-z
  • Sun, W. Ren, J. Zhai, J. and Li, W. (2023). ‘Just green enough’in urban renewal: A multifunctional and pragmatic approach in realizing multiscale urban green space optimization in built-up residential areas. Urban Forestry and Urban Greening, 82, 127891.https://doi.org/10.1016/j.ufug.2023.127891
  • Değermenci, A. S. (2023). Spatio-temporal change analysis and prediction of land use and land cover changes using CA-ANN model. Environmental Monitoring and Assessment,195(10),1229. https://doi.org/10.1007/s10661-023-11848-9
  • Morsy, S., & Hadı, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272-282. https://doi.org/10.26833/ijeg.978961.
  • Kasahun, M. and Legesse, A. (2024). Machine learning for urban land use/cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla town. Heliyon,10(20). https://doi.org/10.1016/j.heliyon.2024.e39146
  • Bhaskar, P. (2012). Urbanization and changing green spaces in Indian cities (Case study–City of Pune). International Journal of Geology, Earth and Environmental Sciences, 2(2), 148-156.
  • Bi, S. Chen, M. and Dai, F. (2022). The impact of urban green space morphology on PM2. 5 pollution in Wuhan, China: A novel multiscale spatiotemporal analytical framework. Building and Environment,221,109340. https://doi.org/10.1016/j.buildenv.2022.109340
  • Baig, M. F. Mustafa, M. R. U. Baig, I. Takaijudin, H. B. and Zeshan, M. T. (2022). Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water, 14(3),402. https://doi.org/10.3390/w14030402
  • Aneesha Satya, B. Shashi, M. and Deva, P. (2020). Future land use land cover scenario simulation using open-source GIS for the city of Warangal, Telangana, India. Applied Geomatics, 12(3),281-290.https://doi.org/10.1007/s12518-020-00298-4
  • Yatoo, S.A. Sahu, P. Kalubarme, M.H. et al. Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal 87,765–786(2022). https://doi.org/10.1007/s10708-020-10274-5
There are 85 citations in total.

Details

Primary Language English
Subjects Land Management, Geospatial Information Systems and Geospatial Data Modelling, Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Brihaspati Mondal 0009-0004-9617-0297

Moatula Ao 0000-0001-7226-541X

Pralip Kumar Narzary 0000-0001-6198-8444

Early Pub Date September 28, 2025
Publication Date October 6, 2025
Submission Date July 17, 2025
Acceptance Date September 17, 2025
Published in Issue Year 2026 Volume: 11 Issue: 2

Cite

APA Mondal, B., Ao, M., & Narzary, P. K. (2025). Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques. International Journal of Engineering and Geosciences, 11(2), 336-351. https://doi.org/10.26833/ijeg.1744303
AMA Mondal B, Ao M, Narzary PK. Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques. IJEG. September 2025;11(2):336-351. doi:10.26833/ijeg.1744303
Chicago Mondal, Brihaspati, Moatula Ao, and Pralip Kumar Narzary. “Assessing the Impact of Urban LULC Dynamic on Green Space in Rapidly Growing City in Eastern India Using Geospatial Techniques”. International Journal of Engineering and Geosciences 11, no. 2 (September 2025): 336-51. https://doi.org/10.26833/ijeg.1744303.
EndNote Mondal B, Ao M, Narzary PK (September 1, 2025) Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques. International Journal of Engineering and Geosciences 11 2 336–351.
IEEE B. Mondal, M. Ao, and P. K. Narzary, “Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques”, IJEG, vol. 11, no. 2, pp. 336–351, 2025, doi: 10.26833/ijeg.1744303.
ISNAD Mondal, Brihaspati et al. “Assessing the Impact of Urban LULC Dynamic on Green Space in Rapidly Growing City in Eastern India Using Geospatial Techniques”. International Journal of Engineering and Geosciences 11/2 (September2025), 336-351. https://doi.org/10.26833/ijeg.1744303.
JAMA Mondal B, Ao M, Narzary PK. Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques. IJEG. 2025;11:336–351.
MLA Mondal, Brihaspati et al. “Assessing the Impact of Urban LULC Dynamic on Green Space in Rapidly Growing City in Eastern India Using Geospatial Techniques”. International Journal of Engineering and Geosciences, vol. 11, no. 2, 2025, pp. 336-51, doi:10.26833/ijeg.1744303.
Vancouver Mondal B, Ao M, Narzary PK. Assessing the impact of urban LULC dynamic on green space in rapidly growing city in eastern India using geospatial techniques. IJEG. 2025;11(2):336-51.