Research Article
BibTex RIS Cite

Connection between Ocean Acidification and Sound Propagation

Year 2015, Volume: 2 Issue: 2, 16 - 26, 03.08.2015
https://doi.org/10.30897/ijegeo.303538

Abstract

Ocean Ambient Noise (OAN) results from both anthropogenic and natural sources. Varied noise sources are
dominant in low (LFB: 10 to 500 Hz), medium (MFB: 500 Hz to 25 kHz) and high (HFB:>25 kHz) frequency
bands. Mostly, LFB is dominated by anthropogenic sources. MFB that cannot spread over long ranges of sound
sources contribute to the OAN. Ocean is an exceptionally noisy place.
Ocean acidification (OAc) from rising Carbon dioxide (CO2
) levels will result in decreased sound absorption
and therefore, amplified levels of OAN. Carbon dioxide spewed into the atmosphere by burned fossil-fuel
which dissolves in the seawater causes more acidic condition in oceans which has strong connection between
chemical oceanography and sound propagation. As the ocean becomes more acidic, sound absorption at LFB
decreases and acidic oceans would result in significant decreases in ocean sound absorption.
In the recent years, the acoustic environment of oceans has reacted to transformations in both natural and
anthropogenic impacts. Greenhouse gases concentrations, especially CO2
, rises in atmosphere due to industrial
revolution. CO2 dissolved in the seawaters deposited in two major forms (carbonate and bicarbonate), which
both lead to decrease pH of surface waters. Over the last 400 million years, pH of oceans has been stable
around 8.2 globally. Latest investigations suggest that global pH is around 8.1 globally and various general
oceanic circulation models (GOCM) calculate that, emissions could reduce ocean pH by a degree between 0.4
units (according to moderate approach) and 0.7 units (according to an aggressive one) by the end of this
century.
This article discusses the CO2 considerations both in the atmosphere and hydrosphere which are directly related
with seawater pH and oceans noise levels.

References

  • Barry, J.P. 2010. Marine organisms and ecosystems in a high-CO2 ocean and an overview of recommendations from the national research council’s committee report on development of an integrated science strategy for ocean acidification monitoring, research, and impacts assessment. Statement for consideration by Subcommittee on Oceans, Atmosphere, Fisheries, and Coast Guard of the Committee on Commerce, Science, and Transportation United States Senate.
  • Bass A.H. and McKibben J.R. 2003. Neural mechanisms and behaviors for acoustic communication in teleost fish. Prog Neurobiol 69:1–26.
  • Brewer, P. G., and J. C. Goldman 1976, Alkalinity changes generated by phytoplankton growth, Limnol. Oceanogr., 21: 108– 117.
  • Brewer, P. G., D. M. Glover, C. Goyet, and D. K. Shafer. 1995. The pH of the North Atlantic Ocean: Improvements to the global model for sound absorption in seawater, J. Geophys. Res., 100: 8761–8776.
  • Browning, D. G., Scheifele, P. M., and Mellen, R. H., (1988). “Attenuation of low frequency sound in ocean surface ducts: Implications for surface loss values,” NUSC TM, p. 318–322.
  • Caldiera, K., and Wickett, M. E. (2003). “Anthropogenic carbon and ocean pH,” Nature (London): 425, 365p.
  • Canadell, J.G., and Que´re´, C.L., Raupacha, M.R., Fielde, C.B., Buitenhuisc, E.T., Ciaisf, P., Conwayg, T.J., Gillett, N.P.,Houghton, R.A., and Marlandi, G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, PNAS, Vol 104 (47): 18 866-18 870.
  • Collins, S., Rost, B., Rynearson, T. A. 2014. Evolutionary potential of marine phytoplankton under ocean acidification. Evolutionary Applications, 7: 140–155.
  • Doney, S. C., N. Mahowald, I. Lima, F. T. Mackenzie, J.-F. Lamarque, and P. J. Rausch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system, Proc. Natl. Acad. Sci. U. S. A., 104(37): 14 580– 14 585.
  • Etter, P.C. 2012. Advanced Applications for Underwater Acoustic Modeling, Advances in Acoustics and Vibration Vol. 2012: 28p.
  • Feely, R. A., Doney, S. C., Cooley, S. R. 2009. Ocean acidification: present conditions and future changes in a high- CO2 world. Oceanography 22:36–47.
  • Feely, R.A., Takahashi, T., Wanninkhof, R., McPhaden, M. J., Cosca, C. E. and Sutherland, S. C. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean, 111 (C8), DOI. 10.1029/2005JC003129
  • Fisher, F. H., and V. P. Simmons. 1977. Sound absorption in sea water, J. Acoust. Soc. Am., 62: 558–564.
  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C. and Zeng, N. 2006. Climate-carbon cycle feedback analysis: Results from the C*MIP model intercomparison. Journal of Climate 19(14):3 337–3 353.
  • Hall-Spencer, Jason M., Riccardo Rodolfo-Metalpa, Sophie Martin, Emma Ransome, Maoz Fine, Suzanne M. Turner, Sonia J. Rowley, Dario Tedesco, and Maria-Cristina Buia. 2008. Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification." Nature 454, no. 7200: 96-99.
  • Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M. and Steneck, R. 2008. A Global map of human impact on marine ecosystems. Science 319: 948–952.
  • Hester, C.K. Peltzer, E. T., Kirkwood, W.J and Brewer, P.G. 2008. Unanticipated consequences of ocean acidification: A noisier ocean at lower pH, Geophysical Research Letters, Vol. 35: 1-5.
  • Hildebrand, J.A. 2009, Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. Vol.395:5-20.
  • Ilyina, T., R. E. Zeebe, and P. G. Brewer. 2009. Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions. Nature Geoscience. Advance Online Publication 2009.
  • IPCC 2005. "IPCC Special Report on Carbon Dioxide Capture and Storage" 390p.
  • Jacobson, M. Z. 2005. Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of Geophysical Research Atmospheres 110 (D7), DOI:10.1029/2004JD005220.
  • Joseph, J.E. and Chiu, C. 2010. “A computational assessment of the sensitivity of ambient noise level to ocean acidification”. J Acoust Soc Am. 128(3), DOI: 10.1121/1.3425738.
  • Ketten, D. R., and D. Wartzok. 3-Dimensional Reconstructions of the Dolphin Ear. Sensory Abilities of Cetaceans: Laboratory and Field Evidence. edited by J. A. Thomas and R. A. Kastelein. Vol. 196,1990.
  • Kira, C. 2014. Expect the Unexpected: Acidic Oceans, Marine Tech. Reporter, March 2014:46-51.
  • Kuperman W.A. 1988. Propagation effects associated with ambient noise. In: Kerman BR (ed) Sea surface sound: natural mechanisms of surface generated noise in the ocean. Kluwer, Dordrecht, :253–272
  • Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C. and Schauer, B. 2005. Anthropogenic CO2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment Line line I6), Journal of Geophysical Research, 110:1-18.
  • Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–38
  • Raven J., C., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C and Watson, A. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London, UK: 68p.
  • Raven, J. A. and Falkowski, P. G. 1999. Oceanic sinks for atmospheric CO2.. Plant, Cell and Environment 22 (6): 741–755.
  • Redfield A.C. 1934. On the proportions of organic derivations in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume. (ed. R.J. Daniel). University Press of Liverpool, pp. 177–192.
  • Reeder D.B. and Chiu, C.S. 2010. "Impact of acidification on ocean noise." J. Acoust. Soc. Am. 128 (3).
  • Richardson WJ, Greene CRJ, Malme CI, Thomson D.H. 1995. Marine mammals and noise. Academic Press, San Diego, CA.
  • Ross, 1993. On Ocean Underwater Ambient Noise. Institute of Acoustics Bulletin, St Albans, Herts, UK: Institute of Acoustics, 18.
  • Rouseff, D. and Tang, D. 2010. Internal waves as a proposed mechanism for increasing ambient noise in an increasingly acidic ocean. Journal of the Acoustical Society of America, vol. 127 (6) pp.235-239.
  • Sabine, C.L., and R.A. Feely. 2007. The oceanic sink for carbon dioxide. Pp. 31–49 in Greenhouse Gas Sinks. D. Reay, N. Hewitt, J. Grace, and K. Smith, eds, CABI Publishing, Oxfordshire, UK.
  • Simpson SD, Meekan M, Montgomery J, McCauley R, Jeffs A. 2005. Homeward sound. Science 308:221.
  • Turley, C., Blackford, J., Widdicombe, S., Lowe, D., Nightingale, P.D. and Rees, A.P. 2006. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Avoiding Dangerous Climate Change. Schellnhuber, H J., Cramer, W., Nakicenovic, N., Wigley, T. and Yohe, G. (Eds). Cambridge University Press, 8, 65-70.
  • Wallace, D.W.R. 2001. Introduction to special section: Ocean measurements and models of carbon sources and sinks, Global Biogeochemical Cycles, 15, 3-10.
  • Waugh, D.W., Hall, T.M., Mcneil, B. And Key, R. 2006. Anthropogenic CO2 in the oceans estimated using transit-time distributions, Tellus B, 58, 376–389.
Year 2015, Volume: 2 Issue: 2, 16 - 26, 03.08.2015
https://doi.org/10.30897/ijegeo.303538

Abstract

References

  • Barry, J.P. 2010. Marine organisms and ecosystems in a high-CO2 ocean and an overview of recommendations from the national research council’s committee report on development of an integrated science strategy for ocean acidification monitoring, research, and impacts assessment. Statement for consideration by Subcommittee on Oceans, Atmosphere, Fisheries, and Coast Guard of the Committee on Commerce, Science, and Transportation United States Senate.
  • Bass A.H. and McKibben J.R. 2003. Neural mechanisms and behaviors for acoustic communication in teleost fish. Prog Neurobiol 69:1–26.
  • Brewer, P. G., and J. C. Goldman 1976, Alkalinity changes generated by phytoplankton growth, Limnol. Oceanogr., 21: 108– 117.
  • Brewer, P. G., D. M. Glover, C. Goyet, and D. K. Shafer. 1995. The pH of the North Atlantic Ocean: Improvements to the global model for sound absorption in seawater, J. Geophys. Res., 100: 8761–8776.
  • Browning, D. G., Scheifele, P. M., and Mellen, R. H., (1988). “Attenuation of low frequency sound in ocean surface ducts: Implications for surface loss values,” NUSC TM, p. 318–322.
  • Caldiera, K., and Wickett, M. E. (2003). “Anthropogenic carbon and ocean pH,” Nature (London): 425, 365p.
  • Canadell, J.G., and Que´re´, C.L., Raupacha, M.R., Fielde, C.B., Buitenhuisc, E.T., Ciaisf, P., Conwayg, T.J., Gillett, N.P.,Houghton, R.A., and Marlandi, G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, PNAS, Vol 104 (47): 18 866-18 870.
  • Collins, S., Rost, B., Rynearson, T. A. 2014. Evolutionary potential of marine phytoplankton under ocean acidification. Evolutionary Applications, 7: 140–155.
  • Doney, S. C., N. Mahowald, I. Lima, F. T. Mackenzie, J.-F. Lamarque, and P. J. Rausch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system, Proc. Natl. Acad. Sci. U. S. A., 104(37): 14 580– 14 585.
  • Etter, P.C. 2012. Advanced Applications for Underwater Acoustic Modeling, Advances in Acoustics and Vibration Vol. 2012: 28p.
  • Feely, R. A., Doney, S. C., Cooley, S. R. 2009. Ocean acidification: present conditions and future changes in a high- CO2 world. Oceanography 22:36–47.
  • Feely, R.A., Takahashi, T., Wanninkhof, R., McPhaden, M. J., Cosca, C. E. and Sutherland, S. C. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean, 111 (C8), DOI. 10.1029/2005JC003129
  • Fisher, F. H., and V. P. Simmons. 1977. Sound absorption in sea water, J. Acoust. Soc. Am., 62: 558–564.
  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C. and Zeng, N. 2006. Climate-carbon cycle feedback analysis: Results from the C*MIP model intercomparison. Journal of Climate 19(14):3 337–3 353.
  • Hall-Spencer, Jason M., Riccardo Rodolfo-Metalpa, Sophie Martin, Emma Ransome, Maoz Fine, Suzanne M. Turner, Sonia J. Rowley, Dario Tedesco, and Maria-Cristina Buia. 2008. Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification." Nature 454, no. 7200: 96-99.
  • Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M. and Steneck, R. 2008. A Global map of human impact on marine ecosystems. Science 319: 948–952.
  • Hester, C.K. Peltzer, E. T., Kirkwood, W.J and Brewer, P.G. 2008. Unanticipated consequences of ocean acidification: A noisier ocean at lower pH, Geophysical Research Letters, Vol. 35: 1-5.
  • Hildebrand, J.A. 2009, Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. Vol.395:5-20.
  • Ilyina, T., R. E. Zeebe, and P. G. Brewer. 2009. Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions. Nature Geoscience. Advance Online Publication 2009.
  • IPCC 2005. "IPCC Special Report on Carbon Dioxide Capture and Storage" 390p.
  • Jacobson, M. Z. 2005. Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of Geophysical Research Atmospheres 110 (D7), DOI:10.1029/2004JD005220.
  • Joseph, J.E. and Chiu, C. 2010. “A computational assessment of the sensitivity of ambient noise level to ocean acidification”. J Acoust Soc Am. 128(3), DOI: 10.1121/1.3425738.
  • Ketten, D. R., and D. Wartzok. 3-Dimensional Reconstructions of the Dolphin Ear. Sensory Abilities of Cetaceans: Laboratory and Field Evidence. edited by J. A. Thomas and R. A. Kastelein. Vol. 196,1990.
  • Kira, C. 2014. Expect the Unexpected: Acidic Oceans, Marine Tech. Reporter, March 2014:46-51.
  • Kuperman W.A. 1988. Propagation effects associated with ambient noise. In: Kerman BR (ed) Sea surface sound: natural mechanisms of surface generated noise in the ocean. Kluwer, Dordrecht, :253–272
  • Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C. and Schauer, B. 2005. Anthropogenic CO2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment Line line I6), Journal of Geophysical Research, 110:1-18.
  • Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–38
  • Raven J., C., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C and Watson, A. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London, UK: 68p.
  • Raven, J. A. and Falkowski, P. G. 1999. Oceanic sinks for atmospheric CO2.. Plant, Cell and Environment 22 (6): 741–755.
  • Redfield A.C. 1934. On the proportions of organic derivations in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume. (ed. R.J. Daniel). University Press of Liverpool, pp. 177–192.
  • Reeder D.B. and Chiu, C.S. 2010. "Impact of acidification on ocean noise." J. Acoust. Soc. Am. 128 (3).
  • Richardson WJ, Greene CRJ, Malme CI, Thomson D.H. 1995. Marine mammals and noise. Academic Press, San Diego, CA.
  • Ross, 1993. On Ocean Underwater Ambient Noise. Institute of Acoustics Bulletin, St Albans, Herts, UK: Institute of Acoustics, 18.
  • Rouseff, D. and Tang, D. 2010. Internal waves as a proposed mechanism for increasing ambient noise in an increasingly acidic ocean. Journal of the Acoustical Society of America, vol. 127 (6) pp.235-239.
  • Sabine, C.L., and R.A. Feely. 2007. The oceanic sink for carbon dioxide. Pp. 31–49 in Greenhouse Gas Sinks. D. Reay, N. Hewitt, J. Grace, and K. Smith, eds, CABI Publishing, Oxfordshire, UK.
  • Simpson SD, Meekan M, Montgomery J, McCauley R, Jeffs A. 2005. Homeward sound. Science 308:221.
  • Turley, C., Blackford, J., Widdicombe, S., Lowe, D., Nightingale, P.D. and Rees, A.P. 2006. Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Avoiding Dangerous Climate Change. Schellnhuber, H J., Cramer, W., Nakicenovic, N., Wigley, T. and Yohe, G. (Eds). Cambridge University Press, 8, 65-70.
  • Wallace, D.W.R. 2001. Introduction to special section: Ocean measurements and models of carbon sources and sinks, Global Biogeochemical Cycles, 15, 3-10.
  • Waugh, D.W., Hall, T.M., Mcneil, B. And Key, R. 2006. Anthropogenic CO2 in the oceans estimated using transit-time distributions, Tellus B, 58, 376–389.
There are 39 citations in total.

Details

Journal Section Research Articles
Authors

Cem Gazioğlu

A. Edip Müftüoğlu This is me

Volkan Demir This is me

Abdullah Aksu This is me

Volkan Okutan This is me

Publication Date August 3, 2015
Published in Issue Year 2015 Volume: 2 Issue: 2

Cite

APA Gazioğlu, C., Müftüoğlu, A. E., Demir, V., Aksu, A., et al. (2015). Connection between Ocean Acidification and Sound Propagation. International Journal of Environment and Geoinformatics, 2(2), 16-26. https://doi.org/10.30897/ijegeo.303538