Research Article
BibTex RIS Cite

Generic Mapping Tools and Matplotlib Package of Python for Geospatial Data Analysis in Marine Geology

Year 2019, Volume: 6 Issue: 3, 225 - 237, 08.12.2019
https://doi.org/10.30897/ijegeo.567343

Abstract







Understanding
patterns of the correlation between the geomorphology and geology of
the seafloor of the hadal trenches is important for the proper ocean
modelling. Current paper focuses on the west Pacific Ocean region
with a special case of Mariana Trench, the deepest hadal trench on
the planet. Methodology of the research include combination of
Generic Mapping Tools (GMT) and Quantum GIS based mapping of the
geographic location, bathymetry, geodesy, sediment thickness,
geomorphic shape, tectonic and geologic structure of the Mariana
Trench area, and statistical analysis by means of Python. A GMT was
selected for GIS visualization due to its powerful functionality and
effective cartographic solutions. An object-oriented high-level
programming language, Python was chosen for the data analysis and
scientific plotting. The statistical analysis includes following
steps: 1) Data distribution by the box plots; 2)
Data
sorting and grouping by stem plots; 3) Correlation analysis by 3D
comparative plots referred to four tectonic plates; 4) Principal
Component Analysis; 5) Analysis of Variance. The statistical analysis
of the data set was performed in Matplotlib library and its
dependencies: NumPy, SciPy and Pandas. A combination of the powerful
methods by GMT with data analysis supported by Python programming
language is an important method in geosciences aimed to increase the
effectiveness of the data analysis by cartographic mapping,
statistical computations and graph plotting. This paper illustrated
usage of GMT, QGIS and Python for combined data analysis scheme. The
results demonstrated correlation between the sediment thickness,
slope steepness, depths and location of the bathymetric profiles
crossing adjacent tectonic plates: Philippine, Pacific, Caroline and
Mariana.

Supporting Institution

China Scholarship Council (CSC)

Project Number

2016SOA002

Thanks

This research was funded by the China Scholarship Council (CSC) State Oceanic Administration (SOA) Marine Scholarship of China, Grant Nr. 2016SOA002, Beijing, P.R.C.

References

  • Abdi, H. & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2 (4): 433–459. arXiv:1108.4372. doi:10.1002/wics.101
  • Bailey, R. A. 2008. Design of Comparative Experiments. Cambridge University Press. ISBN 978-0-521-68357-9.
  • Bates D.M., & Watts, D.G. (1988). Nonlinear Regression Analysis and Its Applications. Ed. by Kotlyakov, V.M. 2nd ed. New York: John Wiley & Sons, Inc. A Wiley-Interscience Publication, 102. ISBN: 0470139005.
  • Cartapanis, O., & Jaccard, S.L., & Galbraith, E. (2018). Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. In: Climate of the Past Discussions. DOI: 10.5194/cp-2018-49
  • Contreras-Reyes, E., Jara, J., Maksymowicz, A., & Weinrebe, W. (2013). Sediment loading at the southern Chilean Trench and its tectonic implications. Journal of Geodynamics, 66, 134–145.
  • Dolotov, Y.S. (2010). Processes of Relief Formation and Sedimentation on the Tidal Coasts of the World Ocean. In Russian. Ed. by Safyanov, G.A. Moscow: Scientific World. ISBN: 978-5- 91522-235-8.
  • Dong, D., Zhang, Z., Bai, Y., Fan, J., & Zhang, G. (2018). Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722, 410–421.
  • Dutkiewicz, A., Müller, R.D., O’Callaghan, S., & Jónasson, H. (2015). Census of seafloor sediments in the worlds ocean. Geology, 43, 795–798. DOI: 10.1130/G36883.1
  • Frigge, M., Hoaglin, D. C., Iglewicz, B. (1989). Some Implementations of the Boxplot. The American Statistician, 43(1): 50–54. doi:10.2307/2685173.
  • Gelman, A. 2005. Analysis of variance? Why it is more important than ever. The Annals of Statistics, 33: 1–53. doi:10.1214/009053604000001048.
  • Heuret, A., Conrad, C.P., & Funiciello, F. (2012). Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophysical Research Letters, 39(5), 131–138.
  • Huene, R. von, & Scholl, D.W. (1991). Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Review of Geophysics, 29, 279–316.
  • Jimenez-Diaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J.F., Alvarez-Gomez, J.A., Tejero, R., Capote, R. (2014). Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth Planetary Science Lettres, 391, 55–66.
  • Jolliffe, I. T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4
  • Judge, A.V., McNutt, M.K. (1991). The relationship between plate curvature and elastic plate thickness: a study of the Peru-Chile trench. Journal of Geophysical Research, 96 (B10), 16625–16639.
  • Kalnins, L.M., Watts, A.B. (2009). Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth and Planetary Science Letters, 286 (1), 89–100.
  • King, S.D., Masters, G., 1992. An inversion for radial viscosity structure using seismic tomography. Geophysical Research Letters, 19, 1551–1554.
  • Lacharité, M., & Metaxas, A. (2017). Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin. Deep-Sea Research Part I, 126, 50–61.
  • Lehu, R., Lallemand, S., Hsu, S.-K., Babonneau, N., Ratzov, G., Lin, A.T., & Dezileau, L. (2015). Deep-sea sedimentation offshore eastern Taiwan: Facies and processes characterization. Marine Geology, 369, 1–18.
  • Lisicyn, A.P. (1974). Osadkoobrasovanie v okeanah (Sedimentation in the oceans). In Russian. Ed. by Bezrukov, P.L. Moscow: Nauka.
  • McGill, R., Tukey, J. W., Larsen, W. A. (1978). Variations of Box Plots. The American Statistician, 32 (1): 12–16. doi:10.2307/2683468.
  • Mckenzie, D., Bowin, C., 1976. Relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81 (11), 1903–1915.
  • Montgomery, D. C. 2001. Design and Analysis of Experiments. 5th ed. New York: Wiley. ISBN 978-0-471-31649-7.
  • Ricard, Y., Vigny, C., Froidevaux, J., 1989. Mantle heterogeneities, geoid and plate motion: a MonteCarlo inversion. Journal of Geophysical Research, 94, 13739–13754.
  • Sandwell and Smith (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102 (B5), 10,039-10,054.
  • Sandwell, D.T., Smith, W.H.F. (2009). Global marine gravity from retracked Geosat and ERS -1 altimetry: ridge segmentation versus spreading rate. Journal of Geophysical Research, 114, 1-18. http://dx.doi.org/10.1029/2008JB006008.
  • Sattarova, V.V., & Aksentov, K.I. (2018). Geochemistry of mercury in surface sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and adjacent abyssal plain and northwest part of the Bering Sea. Deep-Sea Research Part II, 154, 24–31.
  • Sá, J.P.M. de. (2007). Applied Statistics Using SPSS, Statistics, Matlab and R. 2nd ed. Library of Congress Control Number: 2007926024. Porto, Portugal: Springer, 520 ISBN: 978- 3-540-71971-7
  • Turnewitsch, R., Falahat, S., Stehlikova, J., Oguri, K., Glud, R.N., Middelboe, M., Kitazato, H., Wenzhöfer, F., Ando, K., Fujio, S., & Yanagimoto, D. (2014). Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep- Sea Research I, 90, 125–138.
  • Udintsev, G.B. (1987). Relief i stroenie dna okeanov (Relief and the structure of the ocean floor). In Russian. Ed. by Il’yin, A.V. Moscow: Nedra.
  • Völker, D., Reichel, T., Wiedicke, M., & Heubeck, C. (2008). Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents. Marine Geology, 251, 15–31.
  • Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J. & Wobbe, F. (2017) GMT Documentation Release 5.4.2. 314 pp. [Online] http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation
  • Wessel, P., & Smith, W.H.F. (1995) New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, 329.
  • Yang, J., Cui, Z., Dada, O.A., Yang, Y., Yu, H., Xu, Y., Lin, Z., Chen, Y. & Tang, X.(2018). Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean. Marine Pollution Bulletin, 135, 1035–1041.
  • Yang, A., & Fu, Y. (2018). Estimates of effective elastic thickness at subduction zones. Journal of Geodynamics, 117, 75–87.
  • Zheng, H.-W., Gao, R., Li, T.-D., Li, Q.-S., & He, R.-W. (2013). Collisional tectonics between the Eurasian and Philippine Sea plates from tomography evidences in Southeast China. Tectonophysics, 606, 14–23.
  • Zhou, Z., Lin, J., & Behn, M.D. (2015). Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42, 4309–4317.
  • Zhou, Z., & Lin, J. (2018). Elastoplastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734–735, 59–68
  • Zhu, G., Shi, Y., & Tackley, P. (2010). Subduction of the Western Pacific Plate underneath Northeast China: Implications of numerical studies. Physics of the Earth and Planetary Interiors, 178, 92–99.
Year 2019, Volume: 6 Issue: 3, 225 - 237, 08.12.2019
https://doi.org/10.30897/ijegeo.567343

Abstract

Project Number

2016SOA002

References

  • Abdi, H. & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2 (4): 433–459. arXiv:1108.4372. doi:10.1002/wics.101
  • Bailey, R. A. 2008. Design of Comparative Experiments. Cambridge University Press. ISBN 978-0-521-68357-9.
  • Bates D.M., & Watts, D.G. (1988). Nonlinear Regression Analysis and Its Applications. Ed. by Kotlyakov, V.M. 2nd ed. New York: John Wiley & Sons, Inc. A Wiley-Interscience Publication, 102. ISBN: 0470139005.
  • Cartapanis, O., & Jaccard, S.L., & Galbraith, E. (2018). Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. In: Climate of the Past Discussions. DOI: 10.5194/cp-2018-49
  • Contreras-Reyes, E., Jara, J., Maksymowicz, A., & Weinrebe, W. (2013). Sediment loading at the southern Chilean Trench and its tectonic implications. Journal of Geodynamics, 66, 134–145.
  • Dolotov, Y.S. (2010). Processes of Relief Formation and Sedimentation on the Tidal Coasts of the World Ocean. In Russian. Ed. by Safyanov, G.A. Moscow: Scientific World. ISBN: 978-5- 91522-235-8.
  • Dong, D., Zhang, Z., Bai, Y., Fan, J., & Zhang, G. (2018). Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722, 410–421.
  • Dutkiewicz, A., Müller, R.D., O’Callaghan, S., & Jónasson, H. (2015). Census of seafloor sediments in the worlds ocean. Geology, 43, 795–798. DOI: 10.1130/G36883.1
  • Frigge, M., Hoaglin, D. C., Iglewicz, B. (1989). Some Implementations of the Boxplot. The American Statistician, 43(1): 50–54. doi:10.2307/2685173.
  • Gelman, A. 2005. Analysis of variance? Why it is more important than ever. The Annals of Statistics, 33: 1–53. doi:10.1214/009053604000001048.
  • Heuret, A., Conrad, C.P., & Funiciello, F. (2012). Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophysical Research Letters, 39(5), 131–138.
  • Huene, R. von, & Scholl, D.W. (1991). Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Review of Geophysics, 29, 279–316.
  • Jimenez-Diaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J.F., Alvarez-Gomez, J.A., Tejero, R., Capote, R. (2014). Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth Planetary Science Lettres, 391, 55–66.
  • Jolliffe, I. T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4
  • Judge, A.V., McNutt, M.K. (1991). The relationship between plate curvature and elastic plate thickness: a study of the Peru-Chile trench. Journal of Geophysical Research, 96 (B10), 16625–16639.
  • Kalnins, L.M., Watts, A.B. (2009). Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth and Planetary Science Letters, 286 (1), 89–100.
  • King, S.D., Masters, G., 1992. An inversion for radial viscosity structure using seismic tomography. Geophysical Research Letters, 19, 1551–1554.
  • Lacharité, M., & Metaxas, A. (2017). Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin. Deep-Sea Research Part I, 126, 50–61.
  • Lehu, R., Lallemand, S., Hsu, S.-K., Babonneau, N., Ratzov, G., Lin, A.T., & Dezileau, L. (2015). Deep-sea sedimentation offshore eastern Taiwan: Facies and processes characterization. Marine Geology, 369, 1–18.
  • Lisicyn, A.P. (1974). Osadkoobrasovanie v okeanah (Sedimentation in the oceans). In Russian. Ed. by Bezrukov, P.L. Moscow: Nauka.
  • McGill, R., Tukey, J. W., Larsen, W. A. (1978). Variations of Box Plots. The American Statistician, 32 (1): 12–16. doi:10.2307/2683468.
  • Mckenzie, D., Bowin, C., 1976. Relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81 (11), 1903–1915.
  • Montgomery, D. C. 2001. Design and Analysis of Experiments. 5th ed. New York: Wiley. ISBN 978-0-471-31649-7.
  • Ricard, Y., Vigny, C., Froidevaux, J., 1989. Mantle heterogeneities, geoid and plate motion: a MonteCarlo inversion. Journal of Geophysical Research, 94, 13739–13754.
  • Sandwell and Smith (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102 (B5), 10,039-10,054.
  • Sandwell, D.T., Smith, W.H.F. (2009). Global marine gravity from retracked Geosat and ERS -1 altimetry: ridge segmentation versus spreading rate. Journal of Geophysical Research, 114, 1-18. http://dx.doi.org/10.1029/2008JB006008.
  • Sattarova, V.V., & Aksentov, K.I. (2018). Geochemistry of mercury in surface sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and adjacent abyssal plain and northwest part of the Bering Sea. Deep-Sea Research Part II, 154, 24–31.
  • Sá, J.P.M. de. (2007). Applied Statistics Using SPSS, Statistics, Matlab and R. 2nd ed. Library of Congress Control Number: 2007926024. Porto, Portugal: Springer, 520 ISBN: 978- 3-540-71971-7
  • Turnewitsch, R., Falahat, S., Stehlikova, J., Oguri, K., Glud, R.N., Middelboe, M., Kitazato, H., Wenzhöfer, F., Ando, K., Fujio, S., & Yanagimoto, D. (2014). Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep- Sea Research I, 90, 125–138.
  • Udintsev, G.B. (1987). Relief i stroenie dna okeanov (Relief and the structure of the ocean floor). In Russian. Ed. by Il’yin, A.V. Moscow: Nedra.
  • Völker, D., Reichel, T., Wiedicke, M., & Heubeck, C. (2008). Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents. Marine Geology, 251, 15–31.
  • Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J. & Wobbe, F. (2017) GMT Documentation Release 5.4.2. 314 pp. [Online] http://gmt.soest.hawaii.edu/projects/gmt/wiki/Documentation
  • Wessel, P., & Smith, W.H.F. (1995) New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, 329.
  • Yang, J., Cui, Z., Dada, O.A., Yang, Y., Yu, H., Xu, Y., Lin, Z., Chen, Y. & Tang, X.(2018). Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean. Marine Pollution Bulletin, 135, 1035–1041.
  • Yang, A., & Fu, Y. (2018). Estimates of effective elastic thickness at subduction zones. Journal of Geodynamics, 117, 75–87.
  • Zheng, H.-W., Gao, R., Li, T.-D., Li, Q.-S., & He, R.-W. (2013). Collisional tectonics between the Eurasian and Philippine Sea plates from tomography evidences in Southeast China. Tectonophysics, 606, 14–23.
  • Zhou, Z., Lin, J., & Behn, M.D. (2015). Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42, 4309–4317.
  • Zhou, Z., & Lin, J. (2018). Elastoplastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734–735, 59–68
  • Zhu, G., Shi, Y., & Tackley, P. (2010). Subduction of the Western Pacific Plate underneath Northeast China: Implications of numerical studies. Physics of the Earth and Planetary Interiors, 178, 92–99.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Polina Lemenkova 0000-0002-5759-1089

Project Number 2016SOA002
Publication Date December 8, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

APA Lemenkova, P. (2019). Generic Mapping Tools and Matplotlib Package of Python for Geospatial Data Analysis in Marine Geology. International Journal of Environment and Geoinformatics, 6(3), 225-237. https://doi.org/10.30897/ijegeo.567343