Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 2, 172 - 185, 15.06.2021
https://doi.org/10.30897/ijegeo.828112

Abstract

References

  • Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal. 3(4): 1340–1352
  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752.
  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., … Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Ahn, S. R., Park, J. Y., Lee, J. W., Lee, M. S., Shin, H. J., & Kim, S. J. (2016). Comparison of SWAT streamflow and water quality in an agricultural watershed using KOMPSAT-2 and Landsat land use information. KSCE Journal of Civil Engineering. 20, 367–375
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., … Jha, M. K. (2012). Swat: Model Use, Calibration, and Validation. Asabe, 55(4), 1491–1508.
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.
  • Ashraf Vaghefi, S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., & Arnold, J. R. (2013). Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional Environmental Change, 15(3), 475–484.
  • Baker, T. J., & Miller, S. N. (2013). Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100–111.
  • Bieger, K., Hörmann, G., & Fohrer, N. (2013). The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change, 15(3), 485–498.
  • Branger, F., Kermadi, S., Jacqueminet, C., Michel, K., Labbas, M., Krause, P., … Braud, I. (2013). Assessment of the influence of land use data on the water balance components of a peri-urban catchment using a distributed modelling approach. Journal of Hydrology. 505, 312-325
  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28–61.
  • Burian, S. J., Brown, M. J., & McPherson, T. N. (2002). Evaluation of land use/land cover datasets for urban watershed modeling. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45(9), 269–276.
  • Carvalho-Santos, C., Sousa-Silva, R., Gonçalves, J., & Honrado, J. P. (2016). Ecosystem services and biodiversity conservation under forestation scenarios: options to improve management in the Vez watershed, NW Portugal. Regional Environmental Change, 16(6), 1557–1570.
  • Choi, W., & Deal, B. M. (2008). Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA). Journal of Environmental Management, 88(4), 1119–1130.
  • Chormanski, J., Van de Voorde, T., De Roeck, T., Batelaan, O., & Canters, F. (2008). Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover. Sensors. 8(2), 910-932
  • Coskun, H. G., & Alparslan, E. (2009). Environmental modelling of Omerli catchment area in Istanbul, Turkey using remote sensing and GIS techniques. Environmental Monitoring and Assessment, 153(1–4), 323–332.
  • Cotter, A.S., Chaubey, I., Costello, T.A., Soerens, T.S. and Nelson, M.A. (2003), Water Quality Model Output Uncertainty as Affected by Spatial Resolution Of Input Data1. JAWRA Journal of the American Water Resources Association, 39, 977-986
  • Cuceloglu, G., & Ozturk, I. (2017). Development of a Model Framework for Sustainable Water Management Practices: Case Study for the Megacity Istanbul. In M. Feierabend, O. Novytska, & V. Bakos (Eds.), The 9th Eastern European Young Water Professionals Conference (pp. 47–54). Budapest.
  • Cuceloglu, G., Abbaspour, K. C., & Ozturk, I. (2017). Assessing the water-resources potential of Istanbul by using a soil and water assessment tool (SWAT) hydrological model. Water (Switzerland), 9(10).
  • D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900.
  • El-Sadek, A., & Irvem, A. (2014). Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry. 4(38),515 - 530
  • Food and Agricultural Organization (FAO). (2003). The Digital Soil Map of the World and Derived soil Properties; CD-ROM, Version 3.5. Food and Agriculture Organization of the United Nations, Land and Water Development Division: Rome, Italy.
  • Goksel, C., & Turkoglu, H. (1999). The Integration of Satellite Images and GIS for Omerli Water Basin Land use Changes. 19th EARSel Symposium, Remote Sensing in the 21th Century: Economic and Environmental Applications. Valladolid, Spain.
  • Goksel, C., Musaoglu, N., Gurel, M., Ulugtekin, N., Tanik, A., & Seker, D. Z. (2006). Determination of land-use change in an urbanized district of Istanbul via remote sensing analysis. Fresenius Environmental Bulletin, 15(8 A), 798–805.
  • Güngör, Ö., & Göncü, S. (2013). Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrological Processes, 27(3), 453–466.
  • Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural Benefits for Senegal River Basin. Journal of Irrigation and Drainage Engineering, 111(2), 113–124.
  • He, M., & Hogue, T. S. (2012). Integrating hydrologic modeling and land use projections for evaluation of hydrologic response and regional water supply impacts in semi-arid environments. Environmental Earth Sciences, 65(6), 1671–1685.
  • Hosseini, M., Ghafouri, A. M., Amin, M., Tabatabaei, M. R., Goodarzi, M., & Kolahchi, A. A. (2012). Effects of Land Use Changes on Water Balance in Taleghan Catchment, Iran. J. Agr. Sci. Tech, 14, 1159–1172.
  • Huang, J., Zhou, P., Zhou, Z., & Huang, Y. (2013). Assessing the influence of land use and land cover datasets with different points in time and levels of detail on watershed modeling in the north river watershed, china. International Journal of Environmental Research and Public Health, 10(1), 144–157.
  • Istanbul Water and Sewerage Administrationon (ISKI). (2010). Climate Change Impacts on Istanbul and Turkey Water Resources Project Final Report. Istanbul.
  • Jan, J. Q., De Lannoy, G. J. M., & Pauwels, V. R. N. (2010). Comparison of spectral and time domain calibration methods for precipitation-discharge processes. Hydrological Processes, 24(8), 1048–1062.
  • Jha, M. K., Schilling, K. E., Gassman, P. W., & Wolter, C. F. (2010). Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soil and Water Conservation, 65(6), 342–352.
  • Kara, F., & Yucel, I. (2015). Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Environmental Monitoring and Assessment, 187(9).
  • Kara, F., Yucel, I., & Akyurek, Z. (2016). Climate change impacts on extreme precipitation of water supply area in Istanbul: use of ensemble climate modelling and geo-statistical downscaling. Hydrological Sciences Journal, 61(14), 2481–2495.
  • Kaya, S., Seker, D. Z., & Tanik, A. (2014). Temporal Impact Of Urbanization On The Protection Zones Of Two Drinking Water Reservoirs In Istanbul. Fresenius Environmental Bulletin, 23(12), 2984–2989.
  • Khoi, D. N., & Suetsugi, T. (2014). The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrological Processes, 28(3), 640–652.
  • Krysanova, V., & Srinivasan, R. (2014). Assessment of climate and land use change impacts with SWAT. Regional Environmental Change. 15, 431–434
  • Kushwaha, A., & Jain, M. K. (2013). Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model. Water Resources Management, 27(8), 3005–3023.
  • Liu, J., Liu, T., Bao, A., De Maeyer, P., Feng, X., Miller, S. N., & Chen, X. (2016). Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment. Water Resources Management, 30(5), 1757–1770.
  • Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., & Binning, P. J. (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology, 544, 524–537.
  • Maalim, F. K., Melesse, A. M., Belmont, P., & Gran, K. B. (2013). Modeling the impact of land use changes on runoff and sediment yield in the le sueur watershed, Minnesota using GeoWEPP. Catena, 107, 35–45.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290.
  • O’Driscoll, M., Clinton, S., Jefferson, A., Manda, A., & McMillan, S. (2010). Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water, 2(3), 605–648.
  • Qi, S., Sun, G., Wang, Y., Mcnulty, S. G., & Myers, J. A. M. (2009). Stream flow response to climate and land use changes in a coastal watershed in North Carolina. American Society of Agricultural and Biological Engineers, 52(3), 739–749.
  • Qi, Z., Kang, G., Chu, C., Qiu, Y., Xu, Z., & Wang, Y. (2017). Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China. Water (Switzerland), 9(8).
  • Saha, P. P., Zeleke, K., & Hafeez, M. (2014). Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in southeastern Australia. Environmental Earth Sciences, 71(12), 5241–5254.
  • Salmoral, G., Willaarts, B. A., Garrido, A., & Guse, B. (2017). Fostering integrated land and water management approaches: Evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy, 61, 24–39.
  • Sonnenborg, T. O., Christiansen, J. R., Pang, B., Bruge, A., Stisen, S., & Gundersen, P. (2017). Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET. Agricultural and Forest Meteorology, 239, 118–133.
  • Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., & Makeschin, F. (2012). Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 414–415, 413–424.
  • Strauch, M., Lima, J. E. F. W., Volk, M., Lorz, C., & Makeschin, F. (2013). The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment. Journal of Environmental Management, 127. S24-S36
  • Tong, S. T. Y., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489.
  • Tu, J. (2009). Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. Journal of Hydrology, 379(3–4), 268–283.
  • USDA - Soil Conservation Service. (1972). SCS National Engineering Handbook. Section 4, Hydrology. In National Engineering Handbook.
  • Van Beusekom, A. E., Hay, L. E., Viger, R. J., Gould, W. a., Collazo, J. a., & Henareh Khalyani, A. (2014). The Effects of Changing Land Cover on Streamflow Simulation in Puerto Rico. JAWRA Journal of the American Water Resources Association, 50(6), 1575–1593.
  • Van Roosmalen, L., Sonnenborg, T. O., & Jensen, K. H. (2009). Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resources Research, 45(7). W00A15
  • Wegehenkel, M., Heinrich, U., Uhlemann, S., Dunger, V., & Matschullat, J. (2006). The impact of different spatial land cover data sets on the outputs of a hydrological model - a modelling exercise in the Ucker catchment, North-East Germany. Physics and Chemistry of the Earth.
  • Welty, C., Miller, A. J., Belt, K. T., Smith, J. A., Band, L. E., Groffman, P. M., … McGuire, M. P. (2007). Design of an environmental field observatory for quantifying the urban water budget. In Cities of the Future towards Integrated Sustainable Water and Landscape (pp. 72–88).
  • Yan, B., Fang, N. F., Zhang, P. C., & Shi, Z. H. (2013). Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26–37.
  • Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2016). Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environmental Management. 57, 412–431
  • Zhou, F., Xu, Y., Chen, Y., Xu, C. Y., Gao, Y., & Du, J. (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology, 485, 113–125.
  • Zhou, P., Huang, J., Pontius, R. G., & Hong, H. (2016). New insight into the correlations between land use and water quality in a coastal watershed of China: Does point source pollution weaken it? Science of the Total Environment, 543, 591–600.

Analyzing Effects of Two Different Land Use Datasets on Hydrological Simulations by Using SWAT Model

Year 2021, Volume: 8 Issue: 2, 172 - 185, 15.06.2021
https://doi.org/10.30897/ijegeo.828112

Abstract

Land use/cover (LULC) dataset can be addressed as one of the significant factors governing watershed hydrology. Thus, there is a necessity for using appropriate LULC data especially while working on the hydrology of sensitive watersheds from which drinking water is provided. The aim of this study is to analyze the effect of using two different LULC datasets on the hydrological components of a basin in Turkey. Omerli Basin that covers one of the important drinking water reservoirs of Istanbul with a drainage area of 621 km2 is selected as the study area. The Soil and Water Assessment Tool (SWAT), a physically-based hydrological and public domain model, is used as the hydrological model to evaluate the water budget of the basin. SWAT model is calibrated with an automatic calibration and uncertainty analysis program (SWAT-CUP) by using SUFI-2 algorithm. Model setup is conducted for two different LULC datasets which are CORINE obtained for year 2006, and LULC data produced from 2006 dated Landsat satellite image. This pioneer study evaluates and compares the impact of CORINE and Landsat LULC datasets used in hydrological modeling by using SWAT model at sub-basin level. It revealed that different LULC datasets yielded quite similar results in terms of surface water runoff and actual evapotranspiration in the Omerli Basin; however, different spatial distribution was observed especially in urbanized sub-basins. Despite the coarser land-use classification in Landsat data, it enabled the detection of different LULC classification with higher spatial resolution, and thus, different model outputs were achieved especially in the urbanized sub-basins.

References

  • Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal. 3(4): 1340–1352
  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752.
  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., … Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. Ahn, S. R., Park, J. Y., Lee, J. W., Lee, M. S., Shin, H. J., & Kim, S. J. (2016). Comparison of SWAT streamflow and water quality in an agricultural watershed using KOMPSAT-2 and Landsat land use information. KSCE Journal of Civil Engineering. 20, 367–375
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., … Jha, M. K. (2012). Swat: Model Use, Calibration, and Validation. Asabe, 55(4), 1491–1508.
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.
  • Ashraf Vaghefi, S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., & Arnold, J. R. (2013). Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional Environmental Change, 15(3), 475–484.
  • Baker, T. J., & Miller, S. N. (2013). Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100–111.
  • Bieger, K., Hörmann, G., & Fohrer, N. (2013). The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change, 15(3), 485–498.
  • Branger, F., Kermadi, S., Jacqueminet, C., Michel, K., Labbas, M., Krause, P., … Braud, I. (2013). Assessment of the influence of land use data on the water balance components of a peri-urban catchment using a distributed modelling approach. Journal of Hydrology. 505, 312-325
  • Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28–61.
  • Burian, S. J., Brown, M. J., & McPherson, T. N. (2002). Evaluation of land use/land cover datasets for urban watershed modeling. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45(9), 269–276.
  • Carvalho-Santos, C., Sousa-Silva, R., Gonçalves, J., & Honrado, J. P. (2016). Ecosystem services and biodiversity conservation under forestation scenarios: options to improve management in the Vez watershed, NW Portugal. Regional Environmental Change, 16(6), 1557–1570.
  • Choi, W., & Deal, B. M. (2008). Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA). Journal of Environmental Management, 88(4), 1119–1130.
  • Chormanski, J., Van de Voorde, T., De Roeck, T., Batelaan, O., & Canters, F. (2008). Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover. Sensors. 8(2), 910-932
  • Coskun, H. G., & Alparslan, E. (2009). Environmental modelling of Omerli catchment area in Istanbul, Turkey using remote sensing and GIS techniques. Environmental Monitoring and Assessment, 153(1–4), 323–332.
  • Cotter, A.S., Chaubey, I., Costello, T.A., Soerens, T.S. and Nelson, M.A. (2003), Water Quality Model Output Uncertainty as Affected by Spatial Resolution Of Input Data1. JAWRA Journal of the American Water Resources Association, 39, 977-986
  • Cuceloglu, G., & Ozturk, I. (2017). Development of a Model Framework for Sustainable Water Management Practices: Case Study for the Megacity Istanbul. In M. Feierabend, O. Novytska, & V. Bakos (Eds.), The 9th Eastern European Young Water Professionals Conference (pp. 47–54). Budapest.
  • Cuceloglu, G., Abbaspour, K. C., & Ozturk, I. (2017). Assessing the water-resources potential of Istanbul by using a soil and water assessment tool (SWAT) hydrological model. Water (Switzerland), 9(10).
  • D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900.
  • El-Sadek, A., & Irvem, A. (2014). Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry. 4(38),515 - 530
  • Food and Agricultural Organization (FAO). (2003). The Digital Soil Map of the World and Derived soil Properties; CD-ROM, Version 3.5. Food and Agriculture Organization of the United Nations, Land and Water Development Division: Rome, Italy.
  • Goksel, C., & Turkoglu, H. (1999). The Integration of Satellite Images and GIS for Omerli Water Basin Land use Changes. 19th EARSel Symposium, Remote Sensing in the 21th Century: Economic and Environmental Applications. Valladolid, Spain.
  • Goksel, C., Musaoglu, N., Gurel, M., Ulugtekin, N., Tanik, A., & Seker, D. Z. (2006). Determination of land-use change in an urbanized district of Istanbul via remote sensing analysis. Fresenius Environmental Bulletin, 15(8 A), 798–805.
  • Güngör, Ö., & Göncü, S. (2013). Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrological Processes, 27(3), 453–466.
  • Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural Benefits for Senegal River Basin. Journal of Irrigation and Drainage Engineering, 111(2), 113–124.
  • He, M., & Hogue, T. S. (2012). Integrating hydrologic modeling and land use projections for evaluation of hydrologic response and regional water supply impacts in semi-arid environments. Environmental Earth Sciences, 65(6), 1671–1685.
  • Hosseini, M., Ghafouri, A. M., Amin, M., Tabatabaei, M. R., Goodarzi, M., & Kolahchi, A. A. (2012). Effects of Land Use Changes on Water Balance in Taleghan Catchment, Iran. J. Agr. Sci. Tech, 14, 1159–1172.
  • Huang, J., Zhou, P., Zhou, Z., & Huang, Y. (2013). Assessing the influence of land use and land cover datasets with different points in time and levels of detail on watershed modeling in the north river watershed, china. International Journal of Environmental Research and Public Health, 10(1), 144–157.
  • Istanbul Water and Sewerage Administrationon (ISKI). (2010). Climate Change Impacts on Istanbul and Turkey Water Resources Project Final Report. Istanbul.
  • Jan, J. Q., De Lannoy, G. J. M., & Pauwels, V. R. N. (2010). Comparison of spectral and time domain calibration methods for precipitation-discharge processes. Hydrological Processes, 24(8), 1048–1062.
  • Jha, M. K., Schilling, K. E., Gassman, P. W., & Wolter, C. F. (2010). Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soil and Water Conservation, 65(6), 342–352.
  • Kara, F., & Yucel, I. (2015). Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Environmental Monitoring and Assessment, 187(9).
  • Kara, F., Yucel, I., & Akyurek, Z. (2016). Climate change impacts on extreme precipitation of water supply area in Istanbul: use of ensemble climate modelling and geo-statistical downscaling. Hydrological Sciences Journal, 61(14), 2481–2495.
  • Kaya, S., Seker, D. Z., & Tanik, A. (2014). Temporal Impact Of Urbanization On The Protection Zones Of Two Drinking Water Reservoirs In Istanbul. Fresenius Environmental Bulletin, 23(12), 2984–2989.
  • Khoi, D. N., & Suetsugi, T. (2014). The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrological Processes, 28(3), 640–652.
  • Krysanova, V., & Srinivasan, R. (2014). Assessment of climate and land use change impacts with SWAT. Regional Environmental Change. 15, 431–434
  • Kushwaha, A., & Jain, M. K. (2013). Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model. Water Resources Management, 27(8), 3005–3023.
  • Liu, J., Liu, T., Bao, A., De Maeyer, P., Feng, X., Miller, S. N., & Chen, X. (2016). Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment. Water Resources Management, 30(5), 1757–1770.
  • Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., & Binning, P. J. (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology, 544, 524–537.
  • Maalim, F. K., Melesse, A. M., Belmont, P., & Gran, K. B. (2013). Modeling the impact of land use changes on runoff and sediment yield in the le sueur watershed, Minnesota using GeoWEPP. Catena, 107, 35–45.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290.
  • O’Driscoll, M., Clinton, S., Jefferson, A., Manda, A., & McMillan, S. (2010). Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water, 2(3), 605–648.
  • Qi, S., Sun, G., Wang, Y., Mcnulty, S. G., & Myers, J. A. M. (2009). Stream flow response to climate and land use changes in a coastal watershed in North Carolina. American Society of Agricultural and Biological Engineers, 52(3), 739–749.
  • Qi, Z., Kang, G., Chu, C., Qiu, Y., Xu, Z., & Wang, Y. (2017). Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China. Water (Switzerland), 9(8).
  • Saha, P. P., Zeleke, K., & Hafeez, M. (2014). Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in southeastern Australia. Environmental Earth Sciences, 71(12), 5241–5254.
  • Salmoral, G., Willaarts, B. A., Garrido, A., & Guse, B. (2017). Fostering integrated land and water management approaches: Evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy, 61, 24–39.
  • Sonnenborg, T. O., Christiansen, J. R., Pang, B., Bruge, A., Stisen, S., & Gundersen, P. (2017). Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET. Agricultural and Forest Meteorology, 239, 118–133.
  • Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., & Makeschin, F. (2012). Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 414–415, 413–424.
  • Strauch, M., Lima, J. E. F. W., Volk, M., Lorz, C., & Makeschin, F. (2013). The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment. Journal of Environmental Management, 127. S24-S36
  • Tong, S. T. Y., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489.
  • Tu, J. (2009). Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. Journal of Hydrology, 379(3–4), 268–283.
  • USDA - Soil Conservation Service. (1972). SCS National Engineering Handbook. Section 4, Hydrology. In National Engineering Handbook.
  • Van Beusekom, A. E., Hay, L. E., Viger, R. J., Gould, W. a., Collazo, J. a., & Henareh Khalyani, A. (2014). The Effects of Changing Land Cover on Streamflow Simulation in Puerto Rico. JAWRA Journal of the American Water Resources Association, 50(6), 1575–1593.
  • Van Roosmalen, L., Sonnenborg, T. O., & Jensen, K. H. (2009). Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resources Research, 45(7). W00A15
  • Wegehenkel, M., Heinrich, U., Uhlemann, S., Dunger, V., & Matschullat, J. (2006). The impact of different spatial land cover data sets on the outputs of a hydrological model - a modelling exercise in the Ucker catchment, North-East Germany. Physics and Chemistry of the Earth.
  • Welty, C., Miller, A. J., Belt, K. T., Smith, J. A., Band, L. E., Groffman, P. M., … McGuire, M. P. (2007). Design of an environmental field observatory for quantifying the urban water budget. In Cities of the Future towards Integrated Sustainable Water and Landscape (pp. 72–88).
  • Yan, B., Fang, N. F., Zhang, P. C., & Shi, Z. H. (2013). Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26–37.
  • Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2016). Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environmental Management. 57, 412–431
  • Zhou, F., Xu, Y., Chen, Y., Xu, C. Y., Gao, Y., & Du, J. (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology, 485, 113–125.
  • Zhou, P., Huang, J., Pontius, R. G., & Hong, H. (2016). New insight into the correlations between land use and water quality in a coastal watershed of China: Does point source pollution weaken it? Science of the Total Environment, 543, 591–600.
There are 60 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Gökhan Cüceloğlu 0000-0002-9534-250X

Dursun Zafer Seker 0000-0001-7498-1540

Ayşegül Tanık 0000-0002-0319-0298

İzzet Öztürk 0000-0002-8274-5326

Publication Date June 15, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Cüceloğlu, G., Seker, D. Z., Tanık, A., Öztürk, İ. (2021). Analyzing Effects of Two Different Land Use Datasets on Hydrological Simulations by Using SWAT Model. International Journal of Environment and Geoinformatics, 8(2), 172-185. https://doi.org/10.30897/ijegeo.828112