Abstract
A severe mucilage problem appeared as a major environmental disaster in the Marmara Sea, Turkey, during March-May 2021 period, imposing significant implications for the fishing industry, marine life and tourism. This study aimed to provide an insight into the mucilage outbreak observed in the Marmara Sea during March-May 2021 period by establishing some links between meteorological factors including SST anomalies and changes in wind speed and mucilage occurrence and puts some emphasis on the importance of monitoring variability of such parameters to assess mucilage outbreaks. For this purpose, mean and maximum SSTs and wind speed variability at a number of locations along the shores of Marmara and Black Seas are analysed for the April-June period, when the mucilage problem peaked. Both surface and satellite data are used to identify the spatial and temporal extent of the SST anomalies. Furthermore, the relationship between turbidity in the Marmara Sea and the SSTs is sought as a contributing factor to mucilage formation and enhancement. The findings indicate that most of the stations are characterized by warming trends and positive SST anomalies, with a few stations indicating periodic warming and cooling. Moreover, the NOAA NCEP Optimum Interpolation SST (OISST) data supported the warming event especially in central and eastern parts of the Marmara Sea. The wind observations at different locations along the shores of Marmara and Black Seas indicate decreasing trends in the mean wind speed. It is the view taken in this paper that both the increased SSTs and reduced wind speed generate a favourable environment both for the formation and enhancement of the mucilage episode over the Marmara Sea during the March-June 2021 period. Therefore, analysis of such meteorological parameters can provide a better understanding of mucilage aggregation in addition to other causative factors involved. The study also concluded that the modest turbidity conditions caused to increase in the SSTs to some extent in addition to the climate change-related warming.