Research Article
BibTex RIS Cite

Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India

Year 2024, Volume: 11 Issue: 3, 90 - 105, 28.09.2024
https://doi.org/10.30897/ijegeo.1465671

Abstract

Ascertaining and mapping soil nutrient data is crucial for governments to maintain soil health on farmlands. As part of the soil health card project, a total of 329 geo-referenced soil samples were collected from Thaticherla village, Anantapur mandal, Andhra Pradesh, India. These samples were analyzed for various soil properties such as soil pH, electrical conductivity (EC), organic carbon (OC), available nitrogen (N), available phosphorus (P), available potassium (K), available sulphur (S), DTPA extractable micronutrients (Fe, Mn, Zn, Cu), and hot water-soluble boron (B) at a depth of 0 to 15 cm. The results showed high variability (>35%) in coefficients of variation in Cu, EC, Zn, and B. The findings indicated positive correlation between Zn and Mn; N and OC; and OC and Zn. The data underwent logarithmic and Box-Cox transformations to achieve normalization. The ordinary kriging method was employed to analyze the spatial variability. The findings revealed that exponential model was appropriate for B, Fe, Mn, Zn, and OC; Gaussian for K; J-Bessel for N; K-Bessel for Cu, P, and S; stable for EC and rational quadratic for pH, respectively. The analysis showed a strong to weak spatial dependency. In the study area, the spatial variability maps exhibited deficiencies of 97%, 96% and 40% for N, OC and Zn, respectively. Therefore, it is urgent to apply suitable manures and fertilizers in the study area to address these issues. The study area exhibited significant variation in spatial patterns, emphasizing the importance of implementing field-specific plans for soil health and environmental management.

Ethical Statement

As this manuscript does not involve research on humans or animals, nor does it include vulnerable populations, an ethical statement is not applicable.

Thanks

We would like to express our gratitude to Chief Soil Survey Officer, Soil and Land Use Survey of India (SLUSI), Department of Agriculture & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India for providing necessary resources to carry out this research.

References

  • Abdel-Mawgoud, A.M.R., El-Bassiouny, A.M., Ghoname, A., Abou-Hussein, S.D. (2011). Foliar application of amino acids and micronutrients enhance performance of green bean crop under newly reclaimed land conditions. Australian Journal of Basic and Applied Sciences, 5(6), 51–55.
  • Abdu, A., Laekemariam, F., Gidago, G., Kebede, A., Getaneh, L. (2023). Variability analysis of soil properties, mapping, and crop test responses in Southern Ethiopia. Heliyon, 9(3), e14013. doi. org/10.1016/j.heliyon.2023.e14013
  • Arora, C.L. (2002). Analysis of soil, plant and fertilizer. In: Fundamentals of soil science Published by Indian Society of Soil Science, pp 548
  • Arunachalam, P., Kannan, P., Prabukumar, G., and Govindaraj, M. (2013). Zinc deficiency in Indian soils with special focus to enrich zinc in peanut. African Journal of Agricultural Research, 8(50), 6681-6688. doi. org/10.5897/AJARx12.015
  • Asar, Ö., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter Via Goodness-of-Fit Tests. Communications in Statistics – Simulation and Computation, 46(1), 91–105. doi. org/10.1080/03610918.2014.957839
  • Barnett, V., Lewis, T. (1994). Outliers in Statistical Data, third ed. Wiley, New York. Behera, S.K., Mathur, R.K., Shukla, A.K., Suresh, K., Prakash, C. (2018). Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. CATENA, 165, 251–259. doi. org/10.1016/j.CATENA.2018.02.008
  • Behera, S.K., Shukla, A.K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation and Development, 26(1), 71–79. doi. org/10.1002/ldr.2306
  • Behera, S.K., Shukla, A.K., Pachauri, S.P., Shukla, V., Sikaniya, Y., Srivastava, P.C. (2023). Spatio-temporal variability of available sulphur and micronutrients (Zn, Fe, Cu, Mn, B and Mo) in soils of a hilly region of northern India. CATENA, 226, 107082, doi. org/10.1016/j.CATENA.2023.107082
  • Behera, S.K., Shukla, A.K., Prakash, C., Tripathi, A., Kumar, A., Trivedi, V. (2021). Establishing management zones of soil Sulphur and micronutrients for sustainable crop production. Land Degradation and Development, 32(13), 3614–3625. doi. org/10.1002/ldr.3698
  • Behera, S.K., Singh, M.V., Singh, K.N., Todwal, S. (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 162(3-4), 242–250. doi. org/10.1016/j.geoderma.2011.01.016
  • Bhunia, G.S., Pravat, K.S., Chattopadhyay, R. (2018). Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal India). Annals of Agrarian Science, 16(4), 436–443. doi. org/10.1016/j.aasci.2018.06.003
  • Bogunovic, I., Pereira, P., Brevik, E.C. (2017b). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–585, 535–545. http://dx.doi.org/10.1016 /j.scitotenv.2017.01.062
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., Durdevic, B. (2017a). Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. CATENA, 154, 50–62. http://dx.doi.org/10.1016/j.CATENA.2017.02.018
  • Box, G.E.P., Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–252. doi. org/10.1111/j.2517-6161.1964.tb00553.x
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. doi. org/10.2136/ sssaj1994.03615995005800050033x
  • Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefacts, 735, 1-6
  • Chatterjee, S., Santra, P., Majumdar, K., Ghosh, D., Das, I., Sanyal, S.K. (2015). Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India. Environmental Monitoring and Assessment, 187, 183. doi. org/10.1007/s10661-015-4414-9
  • Cressie, N.A.C. (1993). Statistics for spatial data. Revised edition. John Wiley: New York, p. 900. doi. org/10.1002/9781119115151.ch1
  • Das, B.S., Wani, S.P., Benbi, D.K., Muddu, S., Bhattacharyya, T., Mandal, B., Santra, P., Chakraborty, D., Bhattacharyya, R., Basak, N., Reddy, N.N. (2022). Soil health and its relationship with food security and human health to meet the sustainable development goals in India, Soil Security, 8, 100071, doi.org/10.1016/j.soisec.2022.100071
  • Denton, O.A., Aduramigba-Modupe, V.O., Ojo, A.O., Adeoyolanu, O.D., Are, K.S., Adelana, A.O., Oke, A.O. (2017). Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agriculture, 3(1),1–12. doi. org/10.1080/23311932.2017.1279366
  • DES (2019). Hand Book of Statistics, Ananthapuramu District, Government of Andhra Pradesh, Compiled and Published by Chief Planning Officer, Ananthapuramu District, 410 p.
  • Dimkpa, C.O., Bindraban, P.S. (2016). Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 36, 1–26. doi. org/10.1007/s13593-015-0346-6
  • Eljebri, S., Mounir, M., Faroukh, A.T. (2019). Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Systems and Environment, 5, 669–687. doi. org/10.1007/s40808-018-0558-2
  • Esetlili, M. T., Bektas Balcik, F., Balik Sanli, F., Kalkan, K., et al. (2018). Comparison of Object and Pixel-Based Classifications for Mapping Crops Using Rapideye Imagery: A Case Study of Menemen Plain, Turkey. International Journal of Environment and Geoinformatics, 5(2), 231-243. doi.org/10.30897 /ijegeo.442002
  • ESRI (2001). Using ArcGIS™ Geostatistical Analyst,
  • ESRI (2023). Cross Validation using Geostatistical Analyst
  • Fitzpatrick, I.C., Millner, N., Ginn, F. (2022). Governing the soil: natural farming and bionationalism in India. Agriculture and Human Values, 39, 1391–1406. doi. org/10.1007/s10460-022-10327-0
  • Foroughifar, H., Jafarzadeh, A.A., Torabi, H., Pakpour, A., Miransari, M. (2013). Using Geostatistics and Geographic Information System Techniques to Characterize Spatial Variability of Soil Properties, Including Micronutrients. Communications in Soil Science and Plant Analysis, 44(8), 1273–1281. doi. org/10.1080/00103624.2012.758279
  • Fu, W., Tunney, H., Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193. doi. org/10.1016/ j.still.2009.12.001
  • Fu, W., Zhao, K., Jiang, P., Ye, Z., Tunney, H., Zhang, C. (2013). Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Research, 51(6), 503–512. doi. org/10.1071/SR13027
  • Gökmen, V., Sürücü, A., Budak, M., Bilgili, A.V. (2023). Modeling and mapping the spatial variability of soil micronutrients in the Tigris basin. Journal of King Saud University - Science, 35(6), 102724, doi. org/10.1016/j.jksus.2023.102724
  • Goovaerts, P., (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89 (1–2), 1–45. doi. org/10.1016/S0016-7061(98)00078-0
  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of Southeast Michigan. Water Resources Research, 41(7), 1–19. doi. org/10.1029/ 2004WR003705
  • Gorji, T., Yıldırım, A., Sertel, E., Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33-49. doi.org/10.30897 /ijegeo.500452
  • Gupta, V.C. (1967). A simplified method for determining hot water-soluble boron in podzol soils. Soil Science, 103, 111–112.
  • Hanway, J.J., Heidel, H. (1952). Soil analysis methods as used in Iowa state college of soil testing laboratory. Iowa State College of Agriculture Bulletin, 57, 1–31.
  • Hegde, R., Bardhan, G., Niranjana, K.V., Bhaskar, B.P., Singh, S.K. (2019). Spatial variability and mapping of selected soil properties in Kaligaudanahalli Microwatershed, Gundlupet Taluk, Chamarajanagar District, under hot semi-arid agrosubregion of Central Karnataka Plateau, India. SN Applied Sciences, 1, 518. doi. org/10.1007/s42452-019-0486-4
  • Jackson, M.L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi
  • Jin, J., Jiang, C. (2002). Spatial variability of soil nutrients and site-specific nutrient management in the P.R. China. Computers and Electronics in Agriculture, 36(2–3), 165–172. doi. org/10.1016/S0168-1699(02) 00099-6 Jones, P.R. (2019). A note on detecting statistical outliers in psychophysical data. Attention, Perception, Psychophysics, 81, 1189–1196. doi. org/10.3758/ s13414-019-01726-3
  • Kerry, R., Oliver, M.A. (2007). Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140(4), 383–396. doi. org/10.1016/j.geoderma.2007.04.019 Kerry, R., Oliver, M.A., Frogbrook, Z.L. (2010). Sampling in precision agriculture. In Oliver M. A. (Ed.), Geostatistical Applications for Precision Agriculture (pp. 35–63). 2010; Dordrecht: Springer. doi. org/10.1007/978-90-481-9133-8_2
  • Khan, S.T., Malik, A., Alwarthan, A., Shaik, M.R. (2022). The enormity of the zinc deficiency problem and available solutions; an overview. Arabian Journal of Chemistry, 15(3), 103668. doi. org/10.1016/ j.arabjc.2021.103668
  • Kibblewhite, M.G., Ritz, K., Swift, M.J. (2007). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B Biological Sciences, 363(1492), 685–701. doi. org/10.1098/rstb.2007.2178
  • Koç, E., Karayiğit, B. (2022). Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. Journal of Soil Science and Plant Nutrition, 22 (1), 475–500. doi. org/10.1007/s42729-021-00663-1
  • Kumar, M., Babel, A.L. (2011). Available Micronutrient Status and Their Relationship with Soil Properties of Jhunjhunu Tehsil, District Jhunjhunu, Rajasthan, India. Journal of Agricultural Science, 3(2), 97-106. doi. org/10.5539/jas.v3n2p97
  • Kumar, M., Kar, A., Raina, P., Singh, S.K., Moharna P.C., Chauhan, J.S. (2019). Spatial variability of available soil nutrients in the Shekhawati Region of Thar Desert, India. 67(1), 21-33. doi.org/10.5958/0974-0228.2019.00003 Journal of the Indian Society of Soil Science,.3
  • Laekemariam, F., Kibret, K., Mamo, T., Shiferaw, H. (2018). Accounting Spatial Variability of Soil Properties and Mapping Fertilizer Types Using Geostatistics in Southern Ethiopia. Communications in Soil Science and Plant Analysis, 49(1), 124-137. doi. org/10.1080/00103624.2017.1421656
  • Li, Q., Li, S., Xiao, Y., Zhao, B., Wang, C., Li, B., Gao, X., Li, Y., Bai, G., Wang, Y., Yuan, D. (2019). Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. CATENA, 175, 278–285. doi. org/10.1016/ j.CATENA.2018.12.025
  • Li, Q., Luo, Y., Wang, C., Li, B., Zhang, X., Yuan, D., Gao, X., Zhang, H. (2016). Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment, 547, 173–181. doi. org/10.1016/j.scitotenv.2015.12.094
  • Lindsay, W. L., Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron manganese and copper. Soil Science Society of America Journal, 42, 421-428. doi. org/10.2136/sssaj1978.03615995004200030009x
  • Lipiec, J., Usowicz, B. (2018). Spatial relationships among cereal yields and selected soil physical and chemical properties. Science of the Total Environment, 633, 1579–1590. doi. org/10.1016/j.scitotenv.2018.03.277
  • López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, 97–105. doi. org/10.1023/A:1021568415380
  • McGrath, D., Zhang, C. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18(10), 1629–1639. doi. org/10.1016/S0883-2927(03)00045-3
  • McGrath, D., Zhang, C., Carton, O.T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239–248. doi. org/10.1016/ j.envpol.2003.07.002
  • Moharana, P.C., Naitam, R.K., Verma, T.P., Meena, R.L., Kumar, S., Tailor, B.L., Singh, R.S., Singh S.K., Samal, S.K. (2017). Effect of long-term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India. Archives of Agronomy and Soil Science, 63(12), 1661-1675. doi. org/10.1080/03650340.2017.1304637
  • Morton, C.M., Pullabhotla, H., Bevis, L., Lobell, D.B. (2023). Soil micronutrients linked to human health in India. Scientific Reports, 13, 13591. doi. org/10.1038/s41598-023-39084-8
  • Nadal-Romero, E., Cammeraat, E., Perez-Cardiel, E., Lasanta, T. (2016). How do soil organic carbon stock change after crop land abandonment in Mediterranean humid mountain areas? Science of the Total Environment, 566–567, 741–752. doi. org/10.1016/j.scitotenv.2016.05.031
  • Ngabire, M., Wang, T., Xue, X., Liao, J., Sahbeni, G., Huang, C., et al. (2022). Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sensing Applications: Society and Environment, 28, 100847.
  • Niranjan, H.K., Chouhan, R.S., Sharma, H.O., Rathi, D. (2018). Awareness and performance of soil health card scheme in central India. Journal of Crop and Weed, 14(1), 99-103.
  • Nogiya, M., Moharana, P.C., Meena, R., Yadav, B., Jangir, A., Malav, L.C., Sharma, R.P., Kumar, S., Meena, R.S., Sharma, G.K., Jena, R.K., Mina, B.L. Patil, N.G. (2024). Spatial variability of soil variables using geostatistical approaches in the hot arid region of India. Environmental Earth Sciences, 83, 432. doi. org/10.1007/s12665-024-11737-5
  • Olsen, S.R., Cole, C.V., Watanable, F.S., Dean, L.A., (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington, p 939 Patra, A.K., Dutta, S.K., Dey, P., Majumdar, K., Sanyal, S.K. (2017). Potassium Fertility Status of Indian Soils: National Soil Health Card Database Highlights the Increasing Potassium Deficit in Soils. Indian Journal of Fertilisers, 13 (11), 28-33.
  • Pratibha, T.D., Saikia, B., Raju P.L.N. (2020). Land use planning using geospatial technology and soil health card data for a micro watershed in sub-tropical humid region of Meghalaya. Agricultural Research Technology: Open Access Journal, 25(2), 556301.
  • R Core Team (2023). R for Windows
  • Reddy, A.A. (2019). The Soil Health Card Scheme in India: Lessons Learned and Challenges for Replication in Other Developing Countries. Journal of Natural Resources Policy Research, 9 (2), 124–156. doi. org/10.5325/naturesopolirese.9.2.0124
  • Reza, S. K., Dutta, D., Bandyopadhyay, S., Singh, S. K. (2019). Spatial Variability Analysis of Soil Properties of Tinsukia District, Assam, India. Agricultural Research, 8, 231–238. doi. org/10.1007/s40003-018-0365-z
  • Reza, S.K., Baruah, U., Sarkar, D., Singh, S.K. (2016). Spatial variability of soil properties using geostatistical method: a case study of lower Brahmaputra plains, India. Arabian Journal of Geosciences, 9, 446. doi. org/10.1007/s12517-016-2474-y
  • Reza, S.K., Nayak, D.C., Mukhopadhyay, S., Chattopadhyay, T., Singh, S.K. (2017). Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system. Archives of Agronomy and Soil Science, 63(11), 1489-1498. doi. org/10.1080/ 03650340.2017.1296134
  • Saleh, A.M. (2018). Spatial Variability Mapping of Some Soil Properties in Jadwal Al_Amir Project/Babylon/Iraq. Journal of the Indian Society of Remote Sensing, 46, 1481–1495. doi. org/10.1007/ s12524-018-0795-x
  • Salem, H.M., Schott, L.R., Piaskowski, J., Chapagain, A., Yost, J.L., Brooks, E., Kahl, K., Johnson-Maynard, J. (2024). Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability, 16, 645. doi. org/10.3390/su16020645
  • Sanad, H., Moussadek, R., Mouhir, L., Oueld Lhaj, M., Dakak, H., El Azhari, H., Yachou, H., Ghanimi, A., Zouahri, A. (2024). Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy, 14, 1112. doi. org/10.3390/agronomy14061112
  • Sashikala, G., Naidu, M.V.S, Ramana, K.V, Nagamadhuri, K.V., Reddy, A.P.K., Sushakar, P. (2019). Soil Fertility Status in Tatrakallu Village of Andhra Pradesh for Site Specific Recommendations. International Journal of Current Microbiology and Applied Sciences, 8(6), 1016-1023. doi. org/ 10.20546/ijcmas.2019.806.124
  • Sharma, P., Shukla, M.K., Mexal, J.G. (2011). Spatial variability of soil properties in agricultural fields of Southern New Mexico. Soil Science, 176(6), 288–302.doi.org/10.1097/SS.0b013e31821c0dab
  • SHC (2023). Soil Health Card (SHC).
  • Shukla, A.K., Behera, S.K., Singh, V.K., Prakash, C., Sachan, A.K., Dhaliwal, S.S., Srivastava, P.C., Pachauri, S.P., Tripathi, A., Pathak, J., Nayak, A.K., Kumar, A., Tripathi, R., Dwivedi, B.S., Datta, S.P., Meena, M.C., Das, S., Trivedi, V. (2020). Pre-monsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS One, 15(6), e0234053. doi. org/10.1371/journal.pone.0234053
  • Shukla, A.K., Tiwari, P.K., Chandra P. (2014). Micronutrients Deficiencies vis-à-vis Food and Nutritional Security of India. Indian Journal of Fertilizer, 10 (12), 94-112.
  • Subbiah, B.V., Asija, G.L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259-260.
  • Tagore, G.S., Singh, B., Kulhare, P.S., Jatav, R.D. (2015). Spatial variability of available nutrients in soils of Nainpur tehsil of Mandla district of Madhya Pradesh, India using Geo-statistical approach. African Journal of Agricultural Research, 10(34), 3358-3373. doi. org/10.5897/AJAR2015.9578
  • Tamburi, V., Shetty, A., Shrihari, S. (2020). Characterization of spatial variability of vertisol micronutrients by geostatistical techniques in Deccan Plateau of India. Modeling Earth Systems and Environment, 6, 173–182. doi. org/10.1007/s40808-019-00669-w
  • Tang, X.L., Xia, M.P., Pérez-Cruzado, C., Guan, F.Y., Fan, S.H. (2017). Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7, 1–13. doi. org/10.1038/srep42640
  • Tripathi, R., Nayak, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, A., Lal, B., Gautam, P., Sahoo, R.N. (2015). Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geoscience, 8, 10693–10703 (2015). doi. org/10.1007/s12517-015-2003-4
  • Vasu, D., Sahu, N., Tiwary, P., Chandran, P. (2021). Modelling the spatial variability of soil micronutrients for site specific nutrient management in a semi-arid tropical environment. Modeling Earth Systems and Environment, 7, 1797–1812. doi. org/10.1007 /s40808-020-00909-4
  • Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., Nimkar, A.M., Anantwar, S.G. (2016). Soil quality index as a tool to evaluate crop productivity in semi-arid Deccan plateau India. Geoderma, 282, 70–79. doi. org/10.1016/ j.geoderma.2016.07.010
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V. P., Kalaiselvi, B. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25–34. doi. org/10.1016/j.still.2017.01.006
  • Velamala, R. R., Pant, P. K. (2023). SFMToolbox: an ArcGIS Python Toolbox for Automatic Production of Maps of Soil Fertility. Geomatics and Environmental Engineering, 17(2), 105–145. doi. org/10.7494/geom.2023.17.2.105
  • Velamala, R. R., Pant, P. K. (2024). SFM_MB Toolbox: a new ArcGIS toolbox for building spatial distribution maps of soil fertility using model builder in ArcMap of ArcGIS, a case study. Arabian Journal of Geosciences, 17, 46. doi. org/10.1007/s12517-023-11843-x
  • Verma, R.R., Srivastava, T.K., Singh, P., Manjunath, B.L., Kumar, A. (2021). Spatial mapping of soil properties in Konkan region of India experiencing anthropogenic onslaught. PLoS One, 16(2), e0247177. doi.org/10.1371/journal.pone.0247177
  • Vieira, S.R., Gonzalez, P.A. (2003). Analysis of spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, 62, 127–138. doi. org/10.1590/S0006-87052003000100016
  • Walkley, A., Black, I.A. (1934). An examination of Dgetyarelt methods for determining soil organic matter and proposed modifications of the chromic acid method. Soil Science, 37, 29–38. doi.org/10.1097/ 00010694-193401000-00003
  • Wani, S.P., Singh, D. (2021). Transformation of the rural sector for atmanirbhar India. In: Gurumurthy, S., Gupta, A. (Eds.), Atmanirbhar Bharat: A Vibrant and Strong India, Vivekananda International Foundation, New Delhi, India, pp. 279–300. Aryan Books International, New Delhi
  • Webster, R., Oliver, M.A. (2001). Geostatistics for Environmental Scientists. John Wiley Sons, Ltd., Chichester, 271 pp.
  • Wilding, L.P. (1985). Spatial Variability: its documentation, accommodation, and implication to soil surveys. In: Nielsen, D.R., Bouma, J. (Eds.), Soil Spatial Variability. Pudoc, Wageningen, Netherlands.
  • Williams, C.H., Steinbergs, A. (1959). Soil sulphur fraction as chemical indices of available sulphur in soils. Australian Journal of Agricultural Research, 10, 340–352. doi. org/10.1071/AR9590340
  • Yumin, Y., Kai, Y., Lirong, C., Yijuan, B., Yingying, W., Ying, H., Aizhong, D. (2022). Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. International Journal of Environmental Research and Public Health, 19(23), 15470. doi. org/10.3390/ijerph192315470
  • Zhang, C.S. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial pattern in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. doi. org/10.1016/ j.envpol.2005.10.028
  • Zhang, C.S., Fay, D., McGrath, D., Grennan, E., Carton, O.T. (2008). Use of trans-Gaussian kriging for national soil geochemical mapping in Ireland. Geochemistry: Exploration, Environment, Analysis, 8, 255–265. doi. org/10.1144/1467-7873/08-173
  • Zhang, C.S., Manheim, F.T., Hinde, J., Grossman, J.N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874. doi. org/10.1016/j.apgeochem.2005.06.006
  • Zhang, H., Zhuang, S., Qian, H., Wang, F., Ji, H. (2015). Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE, 10(3), e0119175. doi. org/10.1371/journal.pone.0119175
Year 2024, Volume: 11 Issue: 3, 90 - 105, 28.09.2024
https://doi.org/10.30897/ijegeo.1465671

Abstract

References

  • Abdel-Mawgoud, A.M.R., El-Bassiouny, A.M., Ghoname, A., Abou-Hussein, S.D. (2011). Foliar application of amino acids and micronutrients enhance performance of green bean crop under newly reclaimed land conditions. Australian Journal of Basic and Applied Sciences, 5(6), 51–55.
  • Abdu, A., Laekemariam, F., Gidago, G., Kebede, A., Getaneh, L. (2023). Variability analysis of soil properties, mapping, and crop test responses in Southern Ethiopia. Heliyon, 9(3), e14013. doi. org/10.1016/j.heliyon.2023.e14013
  • Arora, C.L. (2002). Analysis of soil, plant and fertilizer. In: Fundamentals of soil science Published by Indian Society of Soil Science, pp 548
  • Arunachalam, P., Kannan, P., Prabukumar, G., and Govindaraj, M. (2013). Zinc deficiency in Indian soils with special focus to enrich zinc in peanut. African Journal of Agricultural Research, 8(50), 6681-6688. doi. org/10.5897/AJARx12.015
  • Asar, Ö., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter Via Goodness-of-Fit Tests. Communications in Statistics – Simulation and Computation, 46(1), 91–105. doi. org/10.1080/03610918.2014.957839
  • Barnett, V., Lewis, T. (1994). Outliers in Statistical Data, third ed. Wiley, New York. Behera, S.K., Mathur, R.K., Shukla, A.K., Suresh, K., Prakash, C. (2018). Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. CATENA, 165, 251–259. doi. org/10.1016/j.CATENA.2018.02.008
  • Behera, S.K., Shukla, A.K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation and Development, 26(1), 71–79. doi. org/10.1002/ldr.2306
  • Behera, S.K., Shukla, A.K., Pachauri, S.P., Shukla, V., Sikaniya, Y., Srivastava, P.C. (2023). Spatio-temporal variability of available sulphur and micronutrients (Zn, Fe, Cu, Mn, B and Mo) in soils of a hilly region of northern India. CATENA, 226, 107082, doi. org/10.1016/j.CATENA.2023.107082
  • Behera, S.K., Shukla, A.K., Prakash, C., Tripathi, A., Kumar, A., Trivedi, V. (2021). Establishing management zones of soil Sulphur and micronutrients for sustainable crop production. Land Degradation and Development, 32(13), 3614–3625. doi. org/10.1002/ldr.3698
  • Behera, S.K., Singh, M.V., Singh, K.N., Todwal, S. (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 162(3-4), 242–250. doi. org/10.1016/j.geoderma.2011.01.016
  • Bhunia, G.S., Pravat, K.S., Chattopadhyay, R. (2018). Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal India). Annals of Agrarian Science, 16(4), 436–443. doi. org/10.1016/j.aasci.2018.06.003
  • Bogunovic, I., Pereira, P., Brevik, E.C. (2017b). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–585, 535–545. http://dx.doi.org/10.1016 /j.scitotenv.2017.01.062
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., Durdevic, B. (2017a). Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. CATENA, 154, 50–62. http://dx.doi.org/10.1016/j.CATENA.2017.02.018
  • Box, G.E.P., Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–252. doi. org/10.1111/j.2517-6161.1964.tb00553.x
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. doi. org/10.2136/ sssaj1994.03615995005800050033x
  • Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefacts, 735, 1-6
  • Chatterjee, S., Santra, P., Majumdar, K., Ghosh, D., Das, I., Sanyal, S.K. (2015). Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India. Environmental Monitoring and Assessment, 187, 183. doi. org/10.1007/s10661-015-4414-9
  • Cressie, N.A.C. (1993). Statistics for spatial data. Revised edition. John Wiley: New York, p. 900. doi. org/10.1002/9781119115151.ch1
  • Das, B.S., Wani, S.P., Benbi, D.K., Muddu, S., Bhattacharyya, T., Mandal, B., Santra, P., Chakraborty, D., Bhattacharyya, R., Basak, N., Reddy, N.N. (2022). Soil health and its relationship with food security and human health to meet the sustainable development goals in India, Soil Security, 8, 100071, doi.org/10.1016/j.soisec.2022.100071
  • Denton, O.A., Aduramigba-Modupe, V.O., Ojo, A.O., Adeoyolanu, O.D., Are, K.S., Adelana, A.O., Oke, A.O. (2017). Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agriculture, 3(1),1–12. doi. org/10.1080/23311932.2017.1279366
  • DES (2019). Hand Book of Statistics, Ananthapuramu District, Government of Andhra Pradesh, Compiled and Published by Chief Planning Officer, Ananthapuramu District, 410 p.
  • Dimkpa, C.O., Bindraban, P.S. (2016). Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 36, 1–26. doi. org/10.1007/s13593-015-0346-6
  • Eljebri, S., Mounir, M., Faroukh, A.T. (2019). Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Systems and Environment, 5, 669–687. doi. org/10.1007/s40808-018-0558-2
  • Esetlili, M. T., Bektas Balcik, F., Balik Sanli, F., Kalkan, K., et al. (2018). Comparison of Object and Pixel-Based Classifications for Mapping Crops Using Rapideye Imagery: A Case Study of Menemen Plain, Turkey. International Journal of Environment and Geoinformatics, 5(2), 231-243. doi.org/10.30897 /ijegeo.442002
  • ESRI (2001). Using ArcGIS™ Geostatistical Analyst,
  • ESRI (2023). Cross Validation using Geostatistical Analyst
  • Fitzpatrick, I.C., Millner, N., Ginn, F. (2022). Governing the soil: natural farming and bionationalism in India. Agriculture and Human Values, 39, 1391–1406. doi. org/10.1007/s10460-022-10327-0
  • Foroughifar, H., Jafarzadeh, A.A., Torabi, H., Pakpour, A., Miransari, M. (2013). Using Geostatistics and Geographic Information System Techniques to Characterize Spatial Variability of Soil Properties, Including Micronutrients. Communications in Soil Science and Plant Analysis, 44(8), 1273–1281. doi. org/10.1080/00103624.2012.758279
  • Fu, W., Tunney, H., Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193. doi. org/10.1016/ j.still.2009.12.001
  • Fu, W., Zhao, K., Jiang, P., Ye, Z., Tunney, H., Zhang, C. (2013). Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Research, 51(6), 503–512. doi. org/10.1071/SR13027
  • Gökmen, V., Sürücü, A., Budak, M., Bilgili, A.V. (2023). Modeling and mapping the spatial variability of soil micronutrients in the Tigris basin. Journal of King Saud University - Science, 35(6), 102724, doi. org/10.1016/j.jksus.2023.102724
  • Goovaerts, P., (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89 (1–2), 1–45. doi. org/10.1016/S0016-7061(98)00078-0
  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of Southeast Michigan. Water Resources Research, 41(7), 1–19. doi. org/10.1029/ 2004WR003705
  • Gorji, T., Yıldırım, A., Sertel, E., Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33-49. doi.org/10.30897 /ijegeo.500452
  • Gupta, V.C. (1967). A simplified method for determining hot water-soluble boron in podzol soils. Soil Science, 103, 111–112.
  • Hanway, J.J., Heidel, H. (1952). Soil analysis methods as used in Iowa state college of soil testing laboratory. Iowa State College of Agriculture Bulletin, 57, 1–31.
  • Hegde, R., Bardhan, G., Niranjana, K.V., Bhaskar, B.P., Singh, S.K. (2019). Spatial variability and mapping of selected soil properties in Kaligaudanahalli Microwatershed, Gundlupet Taluk, Chamarajanagar District, under hot semi-arid agrosubregion of Central Karnataka Plateau, India. SN Applied Sciences, 1, 518. doi. org/10.1007/s42452-019-0486-4
  • Jackson, M.L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi
  • Jin, J., Jiang, C. (2002). Spatial variability of soil nutrients and site-specific nutrient management in the P.R. China. Computers and Electronics in Agriculture, 36(2–3), 165–172. doi. org/10.1016/S0168-1699(02) 00099-6 Jones, P.R. (2019). A note on detecting statistical outliers in psychophysical data. Attention, Perception, Psychophysics, 81, 1189–1196. doi. org/10.3758/ s13414-019-01726-3
  • Kerry, R., Oliver, M.A. (2007). Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140(4), 383–396. doi. org/10.1016/j.geoderma.2007.04.019 Kerry, R., Oliver, M.A., Frogbrook, Z.L. (2010). Sampling in precision agriculture. In Oliver M. A. (Ed.), Geostatistical Applications for Precision Agriculture (pp. 35–63). 2010; Dordrecht: Springer. doi. org/10.1007/978-90-481-9133-8_2
  • Khan, S.T., Malik, A., Alwarthan, A., Shaik, M.R. (2022). The enormity of the zinc deficiency problem and available solutions; an overview. Arabian Journal of Chemistry, 15(3), 103668. doi. org/10.1016/ j.arabjc.2021.103668
  • Kibblewhite, M.G., Ritz, K., Swift, M.J. (2007). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B Biological Sciences, 363(1492), 685–701. doi. org/10.1098/rstb.2007.2178
  • Koç, E., Karayiğit, B. (2022). Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. Journal of Soil Science and Plant Nutrition, 22 (1), 475–500. doi. org/10.1007/s42729-021-00663-1
  • Kumar, M., Babel, A.L. (2011). Available Micronutrient Status and Their Relationship with Soil Properties of Jhunjhunu Tehsil, District Jhunjhunu, Rajasthan, India. Journal of Agricultural Science, 3(2), 97-106. doi. org/10.5539/jas.v3n2p97
  • Kumar, M., Kar, A., Raina, P., Singh, S.K., Moharna P.C., Chauhan, J.S. (2019). Spatial variability of available soil nutrients in the Shekhawati Region of Thar Desert, India. 67(1), 21-33. doi.org/10.5958/0974-0228.2019.00003 Journal of the Indian Society of Soil Science,.3
  • Laekemariam, F., Kibret, K., Mamo, T., Shiferaw, H. (2018). Accounting Spatial Variability of Soil Properties and Mapping Fertilizer Types Using Geostatistics in Southern Ethiopia. Communications in Soil Science and Plant Analysis, 49(1), 124-137. doi. org/10.1080/00103624.2017.1421656
  • Li, Q., Li, S., Xiao, Y., Zhao, B., Wang, C., Li, B., Gao, X., Li, Y., Bai, G., Wang, Y., Yuan, D. (2019). Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. CATENA, 175, 278–285. doi. org/10.1016/ j.CATENA.2018.12.025
  • Li, Q., Luo, Y., Wang, C., Li, B., Zhang, X., Yuan, D., Gao, X., Zhang, H. (2016). Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment, 547, 173–181. doi. org/10.1016/j.scitotenv.2015.12.094
  • Lindsay, W. L., Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron manganese and copper. Soil Science Society of America Journal, 42, 421-428. doi. org/10.2136/sssaj1978.03615995004200030009x
  • Lipiec, J., Usowicz, B. (2018). Spatial relationships among cereal yields and selected soil physical and chemical properties. Science of the Total Environment, 633, 1579–1590. doi. org/10.1016/j.scitotenv.2018.03.277
  • López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, 97–105. doi. org/10.1023/A:1021568415380
  • McGrath, D., Zhang, C. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18(10), 1629–1639. doi. org/10.1016/S0883-2927(03)00045-3
  • McGrath, D., Zhang, C., Carton, O.T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239–248. doi. org/10.1016/ j.envpol.2003.07.002
  • Moharana, P.C., Naitam, R.K., Verma, T.P., Meena, R.L., Kumar, S., Tailor, B.L., Singh, R.S., Singh S.K., Samal, S.K. (2017). Effect of long-term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India. Archives of Agronomy and Soil Science, 63(12), 1661-1675. doi. org/10.1080/03650340.2017.1304637
  • Morton, C.M., Pullabhotla, H., Bevis, L., Lobell, D.B. (2023). Soil micronutrients linked to human health in India. Scientific Reports, 13, 13591. doi. org/10.1038/s41598-023-39084-8
  • Nadal-Romero, E., Cammeraat, E., Perez-Cardiel, E., Lasanta, T. (2016). How do soil organic carbon stock change after crop land abandonment in Mediterranean humid mountain areas? Science of the Total Environment, 566–567, 741–752. doi. org/10.1016/j.scitotenv.2016.05.031
  • Ngabire, M., Wang, T., Xue, X., Liao, J., Sahbeni, G., Huang, C., et al. (2022). Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sensing Applications: Society and Environment, 28, 100847.
  • Niranjan, H.K., Chouhan, R.S., Sharma, H.O., Rathi, D. (2018). Awareness and performance of soil health card scheme in central India. Journal of Crop and Weed, 14(1), 99-103.
  • Nogiya, M., Moharana, P.C., Meena, R., Yadav, B., Jangir, A., Malav, L.C., Sharma, R.P., Kumar, S., Meena, R.S., Sharma, G.K., Jena, R.K., Mina, B.L. Patil, N.G. (2024). Spatial variability of soil variables using geostatistical approaches in the hot arid region of India. Environmental Earth Sciences, 83, 432. doi. org/10.1007/s12665-024-11737-5
  • Olsen, S.R., Cole, C.V., Watanable, F.S., Dean, L.A., (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington, p 939 Patra, A.K., Dutta, S.K., Dey, P., Majumdar, K., Sanyal, S.K. (2017). Potassium Fertility Status of Indian Soils: National Soil Health Card Database Highlights the Increasing Potassium Deficit in Soils. Indian Journal of Fertilisers, 13 (11), 28-33.
  • Pratibha, T.D., Saikia, B., Raju P.L.N. (2020). Land use planning using geospatial technology and soil health card data for a micro watershed in sub-tropical humid region of Meghalaya. Agricultural Research Technology: Open Access Journal, 25(2), 556301.
  • R Core Team (2023). R for Windows
  • Reddy, A.A. (2019). The Soil Health Card Scheme in India: Lessons Learned and Challenges for Replication in Other Developing Countries. Journal of Natural Resources Policy Research, 9 (2), 124–156. doi. org/10.5325/naturesopolirese.9.2.0124
  • Reza, S. K., Dutta, D., Bandyopadhyay, S., Singh, S. K. (2019). Spatial Variability Analysis of Soil Properties of Tinsukia District, Assam, India. Agricultural Research, 8, 231–238. doi. org/10.1007/s40003-018-0365-z
  • Reza, S.K., Baruah, U., Sarkar, D., Singh, S.K. (2016). Spatial variability of soil properties using geostatistical method: a case study of lower Brahmaputra plains, India. Arabian Journal of Geosciences, 9, 446. doi. org/10.1007/s12517-016-2474-y
  • Reza, S.K., Nayak, D.C., Mukhopadhyay, S., Chattopadhyay, T., Singh, S.K. (2017). Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system. Archives of Agronomy and Soil Science, 63(11), 1489-1498. doi. org/10.1080/ 03650340.2017.1296134
  • Saleh, A.M. (2018). Spatial Variability Mapping of Some Soil Properties in Jadwal Al_Amir Project/Babylon/Iraq. Journal of the Indian Society of Remote Sensing, 46, 1481–1495. doi. org/10.1007/ s12524-018-0795-x
  • Salem, H.M., Schott, L.R., Piaskowski, J., Chapagain, A., Yost, J.L., Brooks, E., Kahl, K., Johnson-Maynard, J. (2024). Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability, 16, 645. doi. org/10.3390/su16020645
  • Sanad, H., Moussadek, R., Mouhir, L., Oueld Lhaj, M., Dakak, H., El Azhari, H., Yachou, H., Ghanimi, A., Zouahri, A. (2024). Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy, 14, 1112. doi. org/10.3390/agronomy14061112
  • Sashikala, G., Naidu, M.V.S, Ramana, K.V, Nagamadhuri, K.V., Reddy, A.P.K., Sushakar, P. (2019). Soil Fertility Status in Tatrakallu Village of Andhra Pradesh for Site Specific Recommendations. International Journal of Current Microbiology and Applied Sciences, 8(6), 1016-1023. doi. org/ 10.20546/ijcmas.2019.806.124
  • Sharma, P., Shukla, M.K., Mexal, J.G. (2011). Spatial variability of soil properties in agricultural fields of Southern New Mexico. Soil Science, 176(6), 288–302.doi.org/10.1097/SS.0b013e31821c0dab
  • SHC (2023). Soil Health Card (SHC).
  • Shukla, A.K., Behera, S.K., Singh, V.K., Prakash, C., Sachan, A.K., Dhaliwal, S.S., Srivastava, P.C., Pachauri, S.P., Tripathi, A., Pathak, J., Nayak, A.K., Kumar, A., Tripathi, R., Dwivedi, B.S., Datta, S.P., Meena, M.C., Das, S., Trivedi, V. (2020). Pre-monsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS One, 15(6), e0234053. doi. org/10.1371/journal.pone.0234053
  • Shukla, A.K., Tiwari, P.K., Chandra P. (2014). Micronutrients Deficiencies vis-à-vis Food and Nutritional Security of India. Indian Journal of Fertilizer, 10 (12), 94-112.
  • Subbiah, B.V., Asija, G.L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259-260.
  • Tagore, G.S., Singh, B., Kulhare, P.S., Jatav, R.D. (2015). Spatial variability of available nutrients in soils of Nainpur tehsil of Mandla district of Madhya Pradesh, India using Geo-statistical approach. African Journal of Agricultural Research, 10(34), 3358-3373. doi. org/10.5897/AJAR2015.9578
  • Tamburi, V., Shetty, A., Shrihari, S. (2020). Characterization of spatial variability of vertisol micronutrients by geostatistical techniques in Deccan Plateau of India. Modeling Earth Systems and Environment, 6, 173–182. doi. org/10.1007/s40808-019-00669-w
  • Tang, X.L., Xia, M.P., Pérez-Cruzado, C., Guan, F.Y., Fan, S.H. (2017). Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7, 1–13. doi. org/10.1038/srep42640
  • Tripathi, R., Nayak, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, A., Lal, B., Gautam, P., Sahoo, R.N. (2015). Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geoscience, 8, 10693–10703 (2015). doi. org/10.1007/s12517-015-2003-4
  • Vasu, D., Sahu, N., Tiwary, P., Chandran, P. (2021). Modelling the spatial variability of soil micronutrients for site specific nutrient management in a semi-arid tropical environment. Modeling Earth Systems and Environment, 7, 1797–1812. doi. org/10.1007 /s40808-020-00909-4
  • Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., Nimkar, A.M., Anantwar, S.G. (2016). Soil quality index as a tool to evaluate crop productivity in semi-arid Deccan plateau India. Geoderma, 282, 70–79. doi. org/10.1016/ j.geoderma.2016.07.010
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V. P., Kalaiselvi, B. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25–34. doi. org/10.1016/j.still.2017.01.006
  • Velamala, R. R., Pant, P. K. (2023). SFMToolbox: an ArcGIS Python Toolbox for Automatic Production of Maps of Soil Fertility. Geomatics and Environmental Engineering, 17(2), 105–145. doi. org/10.7494/geom.2023.17.2.105
  • Velamala, R. R., Pant, P. K. (2024). SFM_MB Toolbox: a new ArcGIS toolbox for building spatial distribution maps of soil fertility using model builder in ArcMap of ArcGIS, a case study. Arabian Journal of Geosciences, 17, 46. doi. org/10.1007/s12517-023-11843-x
  • Verma, R.R., Srivastava, T.K., Singh, P., Manjunath, B.L., Kumar, A. (2021). Spatial mapping of soil properties in Konkan region of India experiencing anthropogenic onslaught. PLoS One, 16(2), e0247177. doi.org/10.1371/journal.pone.0247177
  • Vieira, S.R., Gonzalez, P.A. (2003). Analysis of spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, 62, 127–138. doi. org/10.1590/S0006-87052003000100016
  • Walkley, A., Black, I.A. (1934). An examination of Dgetyarelt methods for determining soil organic matter and proposed modifications of the chromic acid method. Soil Science, 37, 29–38. doi.org/10.1097/ 00010694-193401000-00003
  • Wani, S.P., Singh, D. (2021). Transformation of the rural sector for atmanirbhar India. In: Gurumurthy, S., Gupta, A. (Eds.), Atmanirbhar Bharat: A Vibrant and Strong India, Vivekananda International Foundation, New Delhi, India, pp. 279–300. Aryan Books International, New Delhi
  • Webster, R., Oliver, M.A. (2001). Geostatistics for Environmental Scientists. John Wiley Sons, Ltd., Chichester, 271 pp.
  • Wilding, L.P. (1985). Spatial Variability: its documentation, accommodation, and implication to soil surveys. In: Nielsen, D.R., Bouma, J. (Eds.), Soil Spatial Variability. Pudoc, Wageningen, Netherlands.
  • Williams, C.H., Steinbergs, A. (1959). Soil sulphur fraction as chemical indices of available sulphur in soils. Australian Journal of Agricultural Research, 10, 340–352. doi. org/10.1071/AR9590340
  • Yumin, Y., Kai, Y., Lirong, C., Yijuan, B., Yingying, W., Ying, H., Aizhong, D. (2022). Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. International Journal of Environmental Research and Public Health, 19(23), 15470. doi. org/10.3390/ijerph192315470
  • Zhang, C.S. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial pattern in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. doi. org/10.1016/ j.envpol.2005.10.028
  • Zhang, C.S., Fay, D., McGrath, D., Grennan, E., Carton, O.T. (2008). Use of trans-Gaussian kriging for national soil geochemical mapping in Ireland. Geochemistry: Exploration, Environment, Analysis, 8, 255–265. doi. org/10.1144/1467-7873/08-173
  • Zhang, C.S., Manheim, F.T., Hinde, J., Grossman, J.N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874. doi. org/10.1016/j.apgeochem.2005.06.006
  • Zhang, H., Zhuang, S., Qian, H., Wang, F., Ji, H. (2015). Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE, 10(3), e0119175. doi. org/10.1371/journal.pone.0119175
There are 96 citations in total.

Details

Primary Language English
Subjects Geomatic Engineering (Other)
Journal Section Research Articles
Authors

Ranga Rao Velamala 0000-0002-6171-2293

Pawan Kumar Pant 0000-0002-7144-5483

Early Pub Date September 10, 2024
Publication Date September 28, 2024
Submission Date April 5, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Velamala, R. R., & Pant, P. K. (2024). Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India. International Journal of Environment and Geoinformatics, 11(3), 90-105. https://doi.org/10.30897/ijegeo.1465671