Suitable Storage Areas for Estimated Demolished Waste Using InSAR and GIS-Based AHP For Kahramanmaraş Earthquake, Türkiye
Year 2025,
Volume: 12 Issue: 3, 292 - 309, 29.09.2025
Ahmet Yilmaz Genc
,
Levent Genç
,
Nilgün Ayman Öz
,
R. Cüneyt Erenoğlu
Abstract
This study aims to determine the heights of buildings that collapsed during the February 6, 2023, earthquakes in Kahramanmaras, specifically in the Dulkadiroğlu and Onikişubat districts. Using Interferometric Synthetic Aperture Radar (InSAR) techniques based on free Sentinel-1 SAR images provided by the European Space Agency (ESA), pre- and post-earthquake Digital Elevation Model (DEM) were generated. Among 121 randomly selected collapsed buildings, the heights of 103 were successfully estimated using the InSAR approach in combination with Google Earth data. The study highlights the critical role of remote sensing technologies and spatial analysis for post-disaster damage assessment. In particular, the expertise in data processing, spatial modeling, and geodetic methods was essential for deriving accurate height estimations and assessing urban change. Additionally, the Analytic Hierarchy Process (AHP) method was employed to identify suitable storage locations for demolition waste after determining the demolition volumes. The findings demonstrate the effectiveness of Sentinel-1 SAR images and InSAR techniques in accurately identifying collapsed building heights. Moreover, the integration of historical Google Earth imagery with the InSAR technique provides critical insights into urban destruction, facilitating efficient post-disaster demolition and waste management planning.
References
-
Ahmed, H. T., & Aly, A. M. (2023). Recycled Waste Materials in Landscape Design for Sustainable Development (Al-Ahsa as a Model). Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511705
-
Akinci, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97. https://doi.org/10.1016/j.compag.2013.07.006
-
Al-Barqawi, H., & Zayed, T. (2008). Infrastructure Management: Integrated AHP/ANN Model to Evaluate Municipal Water Mains’ Performance. Journal of Infrastructure Systems, 14(4). https://doi.org/10.1061/(asce)1076-0342(2008)14:4(305)
-
Almohsen, A. S. (2024). Challenges Facing the Use of Remote Sensing Technologies in the Construction Industry: A Review. Buildings, 14(9). https://doi.org/10.3390/buildings14092861
-
Bagheri, M., Sulaiman, W. N. A., & Vaghefi, N. (2013). Application of geographic information system technique and analytical hierarchy process model for land-use suitability analysis on coastal area. Journal of Coastal Conservation, 17(1). https://doi.org/10.1007/s11852-012-0213-4
-
Bandara, H. M. S. C. H., Thushanth, G., Somarathna, H. M. C. C., Jayasinghe, D. H. G. A. E., & Raman, S. N. (2023). Feasible techniques for valorisation of construction and demolition waste for concreting applications. International Journal of Environmental Science and Technology, 20(1). https://doi.org/10.1007/s13762-022-04015-z
-
Barra, A., Monserrat, O., Mazzanti, P., Esposito, C., Crosetto, M., & Scarascia Mugnozza, G. (2016). First insights on the potential of Sentinel-1 for landslides detection. Geomatics, Natural Hazards and Risk, 7(6). https://doi.org/10.1080/19475705.2016.1171258
-
Beccaro, L., Cianflone, G., & Tolomei, C. (2023). InSAR-Based Detection of Subsidence Affecting Infrastructures and Urban Areas in Emilia-Romagna Region (Italy). Geosciences (Switzerland), 13(5). https://doi.org/10.3390/geosciences13050138
-
Blasco, J. M. D., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020129
-
Brown, C., Milke, M., & Seville, E. (2011). Disaster waste management: A review article. In Waste Management (Vol. 31, Issue 6). https://doi.org/10.1016/j.wasman.2011.01.027
-
Canan, F., & Bakir, İ. (2008). TOPLU KONUT ALANLARINDA YAPILAŞMA YOĞUNLUKLARININ GÜNEŞLENMEYE GÖRE BELİRLENMESİ. J. Fac.Eng.Arch. Selcuk Univ, 1.
-
Cevher, M., & Keçeli, A. (2018). Zemin Hakim Periyodu ve Bina Yüksekliği Rezonans İlişkisi. Uygulamalı Yerbilimleri Dergisi, 17(2). https://doi.org/10.30706/uybd.463982
-
Che, Y., Li, X., Shi, Q., & Liu, X. (2024). A Simple and Reliable Method for Estimating Building-Scale Height Based on Multisource Datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 8302–8312. https://doi.org/10.1109/JSTARS.2024.3386124
-
Cheruku, S., & Kumar Pancharathi, R. (2013). RECYCLING OF CONSTRUCTION AND DEMOLITION WASTE FOR SUSTAINABILITY-AN OVERVIEW OF THE USE OF RECYCLED CONCRETE AGGREGATES. International Journal of 3R’s. https://www.researchgate.net/publication/264047629
-
Cochran, K. M., & Townsend, T. G. (2010). Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Management, 30(11). https://doi.org/10.1016/j.wasman.2010.04.008
-
Comber, A., Umezaki, M., Zhou, R., Ding, Y., Li, Y., Fu, H., Jiang, H., & Tewkesbury, A. (2012). Using shadows in high-resolution imagery to determine building height. In Remote Sensing Letters (Vol. 3, Issue 7).
https://doi.org/10.1080/01431161.2011.635161
-
Conde, F. C., & De Mata Muñoz, M. (2019). Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water (Switzerland), 11(12). https://doi.org/10.3390/w11122454
-
Crosetto, M., Castillo, M., & Arbiol, R. (2003). Urban subsidence monitoring using radar interferometry: Algorithms and validation. In Photogrammetric Engineering and Remote Sensing (Vol. 69, Issue 7). https://doi.org/10.14358/PERS.69.7.775
-
Dabiri, Z., Hölbling, D., Abad, L., Helgason, J. K., Sæmundsson, P., & Tiede, D. (2020). Assessment of landslide-induced geomorphological changes in Hítardalur Valley, Iceland, using sentinel-1 and sentinel-2 data. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175848
-
Demir, A., & Dinçer, A. E. (2023). Efficient disaster waste management: identifying suitable temporary sites using an emission-aware approach after the Kahramanmaraş earthquakes. International Journal of Environmental Science and Technology, 20(12). https://doi.org/10.1007/s13762-023-05123-0
-
Díaz, E., & Arguello, H. (2016). An algorithm to estimate building heights from Google street-view imagery using single view metrology across a representational state transfer system. Dimensional Optical Metrology and Inspection for Practical Applications V, 9868. https://doi.org/10.1117/12.2224312
-
Dogan, O., & Kalayli, M. A. (2022). Determination of the Optimum Height/Width Ratio of Overturned Buildings in the Adapazarı City Center during the August 17th 1999 Kocaeli Earthquake. Journal of Polytechnic. https://doi.org/10.2339/politeknik.1056428
-
Ferretti, A., Monti-Guarnieri, A., Prati, C., & Rocca, F. (2007). InSAR processing: a practical approach, Part B.
-
Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. https://doi.org/10.3390/ecrs-3-06201
Frantz, D., Schug, F., Okujeni, A., Navacchi, C., Wagner, W., van der Linden, S., & Hostert, P. (2021). National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sensing of Environment, 252. https://doi.org/10.1016/j.rse.2020.112128
-
Funning, G. J., & Garcia, A. (2019). A systematic study of earthquake detectability using Sentinel-1 InterferometricWide-Swath data. Geophysical Journal International, 216(1). https://doi.org/10.1093/gji/ggy426
-
Garthwaite, M. C., Nancarrow, S., Hislop, A., Thankappan, M., Dawson, J. H., & Lawrie, S. (2015). The Design of Radar Corner Reflectors for the Australian Geophysical Observing System: a single design suitable for InSAR deformation monitoring and SAR calibration at multiple microwave frequency bands. In Australian Gov Report (Issue April).
-
González, P. J., Bagnardi, M., Hooper, A. J., Larsen, Y., Marinkovic, P., Samsonov, S. V., & Wright, T. J. (2015). The 2014-2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1 TOPS interferometry. Geophysical Research Letters, 42(21). https://doi.org/10.1002/2015GL066003
-
Grošelj, P., Zandebasiri, M., & Pezdevšek Malovrh, Š. (2023). Evaluation of the European experts on the application of the AHP method in sustainable forest management. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03859-w
-
Grunfeld, N. A. (2023). Introduction to SAR Interferometry – Generating a Digital Elevation Model (DEM).
-
Habib, M. H. R., Rahman, M., Uddin, M. M., Shimu, N. J., Hasan, M., Alam, M. J., & Islam, M. S. (2024). Application of AHP and geospatial technologies to assess ecotourism suitability: A case study of Saint Martin’s Island in Bangladesh. Regional Studies in Marine Science, 70. https://doi.org/10.1016/j.rsma.2023.103357
-
Hernández-Padilla, F., & Angles, M. (2021). Earthquake waste management, is it possible in developing countries? Case study: 2017 mexico city seism. Sustainability (Switzerland), 13(5). https://doi.org/10.3390/su13052431
-
Kakooei, M., & Baleghi, Y. (2023). Spatial-Temporal analysis of urban environmental variables using building height features. Urban Climate, 52. https://doi.org/10.1016/j.uclim.2023.101736
-
Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33(5). https://doi.org/10.1016/S0008-8846(02)01033-5
-
Keski̇n, E., Burak BOZDOĞAN, K., Üniversitesi, K., Fakültesi, M., Mühendisliği Bölümü, İ., Yerleşkesi, K., Onsekiz Mart Üniversitesi, Ç., & Yerleşkesi, T. (2018). 2007 VE 2018 DEPREM YÖNETMELİKLERİNİN KIRKLARELİ İLİ ÖZELİNDE DEĞERLENDİRİLMESİ. In Araştırma Keskin&Bozdoğan/Kırklareli University Journal of Engineering and Science (Vol. 4, Issue 1).
-
Khoshand, A., Khanlari, K., Abbasianjahromi, H., & Zoghi, M. (2020). Construction and demolition waste management: Fuzzy Analytic Hierarchy Process approach. Waste Management and Research, 38(7). https://doi.org/10.1177/0734242X20910468
-
Khoshmanesh, M., Shirzaei, M., & Nadeau, R. M. (2015). Time-dependent model of aseismic slip on the central San Andreas Fault from InSAR time series and repeating earthquakes. Journal of Geophysical Research: Solid Earth, 120(9). https://doi.org/10.1002/2015JB012039
-
Kumar, P., & Krishna, A. P. (2019). InSAR-Based Tree Height Estimation of Hilly Forest Using Multitemporal Radarsat-1 and Sentinel-1 SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12). https://doi.org/10.1109/JSTARS.2019.2963443
-
Kyriou, A., & Nikolakopoulos, K. (2018). Assessing the suitability of Sentinel-1 data for landslide mapping. European Journal of Remote Sensing, 51(1). https://doi.org/10.1080/22797254.2018.1444944
-
Letsios, V., Faraslis, I., & Stathakis, D. (2023). Monitoring Building Activity by Persistent Scatterer Interferometry. Remote Sensing, 15(4). https://doi.org/10.3390/rs15040950
-
Liasis, G., & Stavrou, S. (2016). Satellite images analysis for shadow detection and building height estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 119. https://doi.org/10.1016/j.isprsjprs.2016.07.006
-
Liu, F., Elliott, J. R., Craig, T. J., Hooper, A., & Wright, T. J. (2021). Improving the Resolving Power of InSAR for Earthquakes Using Time Series: A Case Study in Iran. Geophysical Research Letters, 48(14). https://doi.org/10.1029/2021GL093043
-
Liu, Q., Chu, T., Tan, Y., & Boonpook, W. (2019). Application of InSAR in Surface Deformation Monitoring of Electric Power Line Selection. Journal of Computer and Communications, 07(07). https://doi.org/10.4236/jcc.2019.77005
-
Liu, W., Yamazaki, F., Adriano, B., Mas, E., & Koshimura, S. (2014). Development of building height data in Peru from high-resolution SAR imagery. Journal of Disaster Research, 9(6). https://doi.org/10.20965/jdr.2014.p1042
-
Ma, X., Zheng, G., Chi, X., Yang, L., Geng, Q., Li, J., & Qiao, Y. (2023). Mapping fine-scale building heights in urban agglomeration with spaceborne lidar. Remote Sensing of Environment, 285. https://doi.org/10.1016/j.rse.2022.113392
-
Macchiarulo, V., Giardina, G., Milillo, P., Aktas, Y. D., & Whitworth, M. R. Z. (2024). Integrating post-event very high resolution SAR imagery and machine learning for building-level earthquake damage assessment. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-024-01877-1
-
Mete, M. O., & Biyik, M. Y. (2024). Disaster management with cloud-based geographic information systems: site selection of landfill areas after Kahramanmaraş, Türkiye earthquake sequence. Environmental Earth Sciences, 83(11). https://doi.org/10.1007/s12665-024-11674-3
-
Morales, F. F., & de Vries, W. T. (2021). Establishment of Natural Hazards Mapping Criteria Using Analytic Hierarchy Process (AHP). Frontiers in Sustainability, 2. https://doi.org/10.3389/frsus.2021.667105
-
Moslem, S. (2024). A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable urban transport solutions. Engineering Applications of Artificial Intelligence, 128. https://doi.org/10.1016/j.engappai.2023.107447
-
Nascetti, A., Yadav, R., & Ban, Y. (2023). A CNN Regression Model to Estimate Buildings Height Maps Using Sentinel-1 SAR and Sentinel-2 MSI Time Series. https://doi.org/10.1109/igarss52108.2023.10283039
-
Nirupama, & Simonovic, S. P. (2011). ROLE OF REMOTE SENSING IN DISASTER MANAGEMENT. In Mendeley Desktop.
-
Nivolianitou, Z., Synodinou, B., & Manca, D. (2015). Flood disaster management with the use of AHP. International Journal of Multicriteria Decision Making, 5(1–2). https://doi.org/10.1504/IJMCDM.2015.067943
-
Orencio, P. M., & Fujii, M. (2013). A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). International Journal of Disaster Risk Reduction, 3(1). https://doi.org/10.1016/j.ijdrr.2012.11.006
-
Platt, S., Saito, K., Bank, W., & Chenvidyakarn, T. (2010). Monitoring and Evaluating Post-Disaster Recovery Using High-Resolution Satellite Imagery-Towards Standardised Indicators for Post-Disaster Recovery. https://www.researchgate.net/publication/333676571
-
Poon, C. S., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources, Conservation and Recycling, 50(3). https://doi.org/10.1016/j.resconrec.2006.06.005
Reyes-Carmona, C., Barra, A., Galve, J. P., Monserrat, O., Pérez-Peña, J. V., Mateos, R. M., Notti, D., Ruano, P.,
-
Millares, A., López-Vinielles, J., & Azañón, J. M. (2020). Sentinel-1 DInSAR for monitoring active landslides in critical infrastructures: The case of the rules reservoir (Southern Spain). Remote Sensing, 12(5). https://doi.org/10.3390/rs12050809
-
Richards, S., Rao, L., Connelly, S., Raj, A., Raveendran, L., Shirin, S., Jamwal, P., & Helliwell, R. (2021). Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112223
-
Roussat, N., Dujet, C., & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1). https://doi.org/10.1016/j.wasman.2008.04.010
-
Saaty. (2002). Decision making with the Analytic Hierarchy Process. Scientia Iranica, 9(3). https://doi.org/10.1504/ijssci.2008.017590
-
Saaty. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1). https://doi.org/10.1007/s11518-006-0151-5
-
Simonetto, E., Oriot, H., & Garello, R. (2005). Rectangular building extraction from stereoscopic airborne radar images. IEEE Transactions on Geoscience and Remote Sensing, 43(10). https://doi.org/10.1109/TGRS.2005.853570
-
Sisay, T. (2024). Application of optical images and analytical hierarchy process model for solid waste dumping site analysis in Kombolcha town, Northeastern, Ethiopia. Heliyon, 10(13). https://doi.org/10.1016/j.heliyon.2024.e33474
-
Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68(2). https://doi.org/10.1007/s11069-013-0639-5
-
Tang, W., Ng, A. H. M., Wang, H., Kuang, J., & Du, Z. (2024). Surface Subsidence Characteristics and Causes Analysis in Ningbo Plain by Sentinel-1A TS-InSAR. Remote Sensing, 16(13). https://doi.org/10.3390/rs16132438
-
Tiwari, R. K., Malik, K., & Arora, M. K. (2017). Urban subsidence detection using the sentinel-1 multi-temporal insar data. 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017, 2017-October.
-
Villoria-Sáez, P., Porras-Amores, C., & del Río Merino, M. (2020). Estimation of construction and demolition waste. In Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment. https://doi.org/10.1016/B978-0-12-819055-5.00002-4
-
Wechsler, S. P. (2003). Perceptions of Digital Elevation Model Uncertainty by DEM Users. Journal of the Urban and Regional Information Systems Association, 15(2).
-
Wegner, J. D., Ziehn, J. R., & Soergel, U. (2014). Combining high-resolution optical and insar features for height estimation of buildings with flat roofs. IEEE Transactions on Geoscience and Remote Sensing, 52(9). https://doi.org/10.1109/TGRS.2013.2293513
-
Yilmaz, M., Altundal Oncu, M., Guney, İ., Ates, E., & Dagli, D. (2023). 6 Şubat 2023 Kahramanmaraş depremlerinde ortaya çıkan molozların yönetimi için CBS ile uygun arazilerin tespit edilmesi: Hatay İli örneği. Türk Coğrafya Dergisi, 83. https://doi.org/10.17211/tcd.1361036
-
Yu, H., Li, B., Xiao, Y., Sun, J., Chen, C., Jin, G., & Liu, H. (2024). Surface Subsidence over a Coastal City Using SBAS-InSAR with Sentinel-1A Data: A Case of Nansha District, China. Remote Sensing, 16(1). https://doi.org/10.3390/rs16010055
-
Yulianto, F., Sofan, P., & Rokhis Khomarudin, M. (2011). A Review of Using SAR Imagery for Disaster Emergency Response. Geomatika SAR Nasional (GeoSARNas), 65. https://www.researchgate.net/publication/381654368
-
Zhong, W., Chu, T., Tissot, P., Wu, Z., Chen, J., & Zhang, H. (2022). Integrated coastal subsidence analysis using InSAR, LiDAR, and land cover data. Remote Sensing of Environment, 282. https://doi.org/10.1016/j.rse.2022.113297
-
Zhu, B., Wang, Y., & Yu, H. (2023). An Algorithm Measuring Urban Building Heights by Combining the PS-InSAR Technique and Two-Stage Programming Approach Framework. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16. https://doi.org/10.1109/JSTARS.2023.3305890