Review Article
BibTex RIS Cite

Utilization of Aluminium for Hydrogen Production: A Sustainable and In-Situ Approach

Year 2025, Volume: 1 Issue: 1, 26 - 31, 30.06.2025

Abstract

The production of hydrogen from affordable and widely available resources is necessary for the broader adoption of hydrogen as a sustainable energy carrier. Aluminium, because of its significant energy content per unit mass, natural abundance, and recyclability, has attracted significant attention as a reactive material for on-demand hydrogen generation when combined with water or reducing agents such as sodium borohydride (NaBH4) and hydrogen chloride (HCl). Furthermore, aluminium scraps are a valuable resource which can be used to produce various useful products such as hydrogen, alumina, potash alum, etc. A major limitation in utilising aluminium for hydrogen production is the development of a stable oxide layer (Al2O3) on its outer layer, which inhibits its reaction with water. To overcome this barrier and improve hydrogen yield, various activation techniques have been explored. This review critically examines several activation methods aimed at enhancing the reactivity of aluminium, including salt-assisted activation, metal-assisted activation, particle size reduction, etc. The study concludes with a discussion on future directions, emphasising the need for environmentally friendly activation strategies, reusable reaction systems, and integration with aluminium scrap recycling and renewable energy systems to support sustainable hydrogen production.

References

  • [1] Renewable Energy - Our World in Data, [Online]. Available: https://ourworldindata.org/renewable-energy. [Accessed: Jun. 4, 2025].
  • [2] A. A. Basheer and I. Ali, “Water photo splitting for green hydrogen energy by green nanoparticles,” Int. J. Hydrogen Energy, vol. 44, 2019, doi: 10.1016/j.ijhydene.2019.03.040.
  • [3] I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, vol. 40, no. 34, 2014, doi: 10.1016/j.ijhydene.2014.12.035.
  • [4] I. Dincer and C. Acar, “Innovation in hydrogen production,” Int. J. Hydrogen Energy, vol. 42, 2017, doi: 10.1016/j.ijhydene.2017.04.107.
  • [5] R. S. El-Emam and H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production,” J. Clean. Prod., vol. 220, 2019, doi: 10.1016/j.jclepro.2019.01.309.
  • [6] A. Ersoz, H. Olgun, and S. Ozdogan, “Reforming options for hydrogen production from fossil fuels for PEM fuel cells,” J. Power Sources, vol. 154, no. 1, 2006, doi: 10.1016/j.jpowsour.2005.02.092.
  • [7] H. Fayaz et al., “An overview of hydrogen as a vehicle fuel,” Renew. Sustain. Energy Rev., vol. 16, 2012, doi: 10.1016/j.rser.2012.06.012.
  • [8] D. W. Hurtubise, D. A. Klosterman, and A. B. Morgan, “Development and demonstration of a deployable apparatus for generating hydrogen from the hydrolysis of aluminum via sodium hydroxide,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 6777–6788, 2018, doi: 10.1016/j.ijhydene.2018.02.087.
  • [9] J. Kim and T. Kim, “Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source,” Appl. Energy, vol. 160, pp. 275–285, 2015, doi: 10.1016/j.apenergy.2015.03.084.
  • [10] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, 2017, doi: 10.1016/j.rser.2016.09.044.
  • [11] J. E. Seo, Y. Kim, Y. Kim, K. Kim, J. H. Lee, D. H. Lee, and S. W. Nam, “Portable ammonia-borane-based H₂ power-pack for unmanned aerial vehicles,” J. Power Sources, vol. 254, pp. 1–8, 2014, doi: 10.1016/j.jpowsour.2013.11.112.
  • [12] J. Eppinger and K. W. Huang, “Formic acid as a hydrogen energy carrier,” ACS Energy Lett., vol. 2, no. 1, pp. 188–195, 2017, doi: 10.1021/acsenergylett.6b00574
  • [13] J. Luo, X. Kang, C. Chen, J. Song, D. Luo, and P. Wang, “Rapidly releasing over 9 wt % of H₂ from NH₃BH₃–Mg or NH₃BH₃–MgH₂ composites around 85 °C,” J. Phys. Chem. C, vol. 120, no. 33, pp. 18435–18441, 2016, doi: 10.1021/acs.jpcc.6b04230.
  • [14] X. Zhang, L. Kam, and T. J. Williams, “Dehydrogenation of ammonia borane through the third equivalent of hydrogen,” Dalton Trans., vol. 45, no. 18, pp. 7392–7397, 2016, doi: 10.1039/c6dt00604c.
  • [15] Fuel Cells | Department of Energy, [Online]. Available: https://www.energy.gov/eere/fuelcells/fuel-cells. [Accessed: Jun. 5, 2025].
  • [16] S. M. Kwon, S. Kang, and T. Kim, “Development of NaBH₄-based hydrogen generator for fuel cell unmanned aerial vehicles with movable fuel cartridge,” Energy Procedia, vol. 158, pp. 2241–2246, 2019, doi: 10.1016/j.egypro.2019.01.443.
  • [17] A. Braunschweiler, Catalytic dehydrogenation of liquid organic hydrogen carriers, M.Sc. thesis, Aalto Univ., Nov. 6, 2018. [Online]. Available: https://aaltodoc.aalto.fi/handle/123456789/34676. [Accessed: Jun. 26, 2025].
  • [18] M. Veronica Sofianos, D. A. Sheppard, E. Ianni, T. D. Humphries, M. R. Rowles, S. Liu, and C. E. Buckley, “Novel synthesis of porous aluminium and its application in hydrogen storage,” J. Alloys Compd., vol. 702, pp. 114–120, 2017, doi: 10.1016/j.jallcom.2017.01.254.
  • [19] Aluminum: uses, applications - Metalpedia, [Online]. Available: http://metalpedia.asianmetal.com/metal/aluminum/application.shtml. [Accessed: Jun. 5, 2025].
  • [20] M. Mahinroosta and A. Allahverdi, “Hazardous aluminum dross characterization and recycling strategies: A critical review,” J. Environ. Manage., vol. 223, pp. 452–468, 2018, doi: 10.1016/J.JENVMAN.2018.06.068.
  • [21] H. Zou, S. Chen, Z. Zhao, and W. Lin, “Hydrogen production by hydrolysis of aluminum,” J. Alloys Compd., vol. 578, pp. 571–576, 2013, doi: 10.1016/j.jallcom.2013.06.016.
  • [22] A. M. Al-Bassam, J. A. Conner, and V. I. Manousiouthakis, “Natural-gas-derived hydrogen in the presence of carbon fuel taxes and concentrated solar power,” ACS Sustainable Chem. Eng., vol. 6, no. 3, pp. 3731–3742, 2018, doi: 10.1021/acssuschemeng.7b02745.
  • [23] L. J. Guo, H. Jin, Z. W. Ge, Y. J. Lu, and C. Q. Cao, “Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission,” Sci. China Technol. Sci., vol. 58, no. 12, pp. 2084–2093, 2015, doi: 10.1007/s11431-015-5967-0.
  • [24] A. Midilli, H. Kucuk, M. E. Topal, U. Akbulut, and I. Dincer, “A comprehensive review on hydrogen production from coal gasification: Challenges and opportunities,” Int. J. Hydrogen Energy, vol. 46, no. 62, pp. 31770–31797, 2021, doi: 10.1016/j.ijhydene.2021.05.088.
  • [25] M. Muresan, C. C. Cormos, and P. S. Agachi, “Techno-economical assessment of coal and biomass gasification-based hydrogen production supply chain system,” Chem. Eng. Res. Des., vol. 91, no. 8, pp. 1376–1386, 2013, doi: 10.1016/j.cherd.2013.02.018.
  • [26] S. S. Seyitoglu, I. Dincer, and A. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2550–2561, 2017, doi: 10.1016/j.ijhydene.2016.08.228.
  • [27] J. Yates, R. Daiyan, R. Patterson, R. Egan, R. Amal, A. Ho-Baillie, and N. L. Chang, “Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis,” Cell Rep. Phys. Sci., vol. 1, no. 10, p. 100209, 2020, doi: 10.1016/j.xcrp.2020.100209.
  • [28] B. W. McQuillan, L. C. Brown, G. E. Besenbruch, R. Tolman, T. Cramer, B. E. Russ and A. Lewandowski, "High efficiency generation of hydrogen fuels using solar thermal chemical splitting of water (Solar Thermo Chemical Splitting for H₂)," ResearchGate, 2010. [Online]. Available: https://www.researchgate.net/publication/273450634. [Accessed: Jun. 26, 2025].
  • [29] X. Chen, Z. Zhao, X. Liu, M. Hao, A. Chen, and Z. Tang, “Hydrogen generation by the hydrolysis reaction of ball-milled aluminium–lithium alloys,” J. Power Sources, vol. 254, pp. 140–146, 2014, doi: 10.1016/j.jpowsour.2013.12.113.
  • [30] E. Czech and T. Troczynski, “Hydrogen generation through massive corrosion of deformed aluminum in water,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1029–1037, 2010, doi: 10.1016/j.ijhydene.2009.11.085.
  • [31] P. Dupiano, D. Stamatis, and E. L. Dreizin, “Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders,” Int. J. Hydrogen Energy, vol. 36, no. 8, pp. 4781–4791, 2011, doi: 10.1016/j.ijhydene.2011.01.062.
  • [32] W. Z. Gai, W. H. Liu, Z. Y. Deng, and J. G. Zhou, “Reaction of Al powder with water for hydrogen generation under ambient condition,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 13132–13140, 2012, doi: 10.1016/j.ijhydene.2012.04.025.
  • [33] A. V. Ilyukhina, A. S. Ilyukhin, and E. I. Shkolnikov, “Hydrogen generation from water by means of activated aluminum,” Int. J. Hydrogen Energy, vol. 37, no. 21, pp. 16445–16452, 2012, doi: 10.1016/j.ijhydene.2012.02.175.
  • [34] Y. Liu, X. Wang, H. Liu, Z. Dong, S. Li, H. Ge, and M. Yan, “Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride,” Energy, vol. 72, pp. 636–641, 2014, doi: 10.1016/j.energy.2014.05.060.
  • [35] G. L. Ma, H. B. Dai, D. W. Zhuang, H. J. Xia, and P. Wang, “Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water,” Int. J. Hydrogen Energy, vol. 37, no. 7, pp. 5874–5880, 2012, doi: 10.1016/j.ijhydene.2011.12.157.
  • [36] H. X. Meng, N. Wang, Y. M. Dong, Z. L. Jia, L. J. Gao, and Y. J. Chai, “Influence of M–B (M = Fe, Co, Ni) on aluminum–water reaction,” J. Power Sources, vol. 268, pp. 468–475, 2014, doi: 10.1016/j.jpowsour.2014.06.094.
  • [37] A. Newell and K. R. Thampi, “Novel amorphous aluminum hydroxide catalysts for aluminum–water reactions to produce H₂ on demand,” Int. J. Hydrogen Energy, vol. 42, no. 37, pp. 23421–23429, 2017, doi: 10.1016/j.ijhydene.2017.04.279.
  • [38] L. Soler, A. M. Candela, J. Macanás, M. Muñoz, and J. Casado, “Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide,” Int. J. Hydrogen Energy, vol. 34, no. 20, pp. 8867–8873, 2009, doi: 10.1016/j.ijhydene.2009.08.008.
  • [39] H. T. Teng, T. Y. Lee, Y. K. Chen, H. W. Wang, and G. Cao, “Effect of Al(OH)₃ on the hydrogen generation of aluminum–water system,” J. Power Sources, vol. 219, pp. 16–21, 2012, doi: 10.1016/j.jpowsour.2012.06.077.
  • [40] H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, “A review on hydrogen production using aluminum and aluminum alloys,” Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 845–853, 2009, doi: 10.1016/j.rser.2008.02.009.
  • [41] Z. Ma, P. Davenport, and G. Saur, “System and technoeconomic analysis of solar thermochemical hydrogen production,” Renew. Energy, vol. 190, pp. 591–604, 2022, doi: 10.1016/j.renene.2022.03.108.
  • [42] B. Wang, S. Li, Y. Pu, and C. Wang, “Gliding arc plasma reforming of toluene for on-board hydrogen production,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 7010–7020, 2020, doi: 10.1016/j.ijhydene.2019.12.184.
  • [43] N. Budhraja, A. Pal, and R. S. Mishra, “Plasma reforming for hydrogen production: Pathways, reactors and storage,” Int. J. Hydrogen Energy, vol. 48, no. 6, pp. 2447–2466, 2023, doi: 10.1016/j.ijhydene.2022.10.143.
  • [44] W. Wang, Y. Ma, G. Chen, C. Quan, J. Yanik, N. Gao, and X. Tu, “Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process,” Fuel Process. Technol., vol. 234, p. 107333, 2022, doi: 10.1016/j.fuproc.2022.107333.
  • [45] J. D. Holladay, J. Hu, D. L. King, and Y. Wang, “An overview of hydrogen production technologies,” Catal. Today, vol. 139, no. 4, pp. 244–260, 2009, doi: 10.1016/j.cattod.2008.08.039.
  • [46] D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas production for gas-to-liquids applications: Technologies, issues and outlook,” Fuel Process. Technol., vol. 71, no. 1–3, pp. 139–148, 2001, doi: 10.1016/S0378-3820(01)00140-0.
  • [47] B. Ghorbani, S. Zendehboudi, Y. Zhang, H. Zarrin, and I. Chatzis, “Thermochemical water-splitting structures for hydrogen production: Thermodynamic, economic, and environmental impacts,” Energy Convers. Manag., vol. 297, p. 117599, 2023, doi: 10.1016/j.enconman.2023.117599.
  • [48] D. Kumar and K. Muthukumar, “An overview on activation of aluminium–water reaction for enhanced hydrogen production,” J. Alloys Compd., vol. 835, p. 155189, 2020, doi: 10.1016/j.jallcom.2020.155189.
  • [49] V. Yadav and F. Khalid, “A thermodynamics perspective on a novel aluminium–chlorine (Al–Cl) hybrid thermochemical cycle for hydrogen production,” Int. J. Hydrogen Energy, vol. 50, no. 25, pp. 10001–10013, 2025, doi: 10.1016/J.IJHYDENE.2025.01.084.
  • [50] V. Shmelev, V. Nikolaev, J. H. Lee, and C. Yim, “Hydrogen production by reaction of aluminum with water,” Int. J. Hydrogen Energy, vol. 41, no. 38, pp. 16664–16673, 2016, doi: 10.1016/J.IJHYDENE.2016.05.159.
  • [51] A. V. Ilyukhina, O. V. Kravchenko, and B. M. Bulychev, “Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction,” J. Alloys Compd., vol. 690, pp. 321–329, 2017, doi: 10.1016/J.JALLCOM.2016.08.151.
  • [52] A. I. Nizovskii, S. V. Belkova, A. A. Novikov, and M. V. Trenikhin, “Hydrogen production for fuel cells in reaction of activated aluminum with water,” Procedia Eng., vol. 113, pp. 8–12, 2015, doi: 10.1016/J.PROENG.2015.07.278.
  • [53] V. Rosenband and A. Gany, “Application of activated aluminum powder for generation of hydrogen from water,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 10898–10904, 2010, doi: 10.1016/J.IJHYDENE.2010.07.019.
  • [54] F. Wang, H. Ni, F. Sun, M. Li, and L. Chen, “Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer,” Biomed. Pharmacother., vol. 81, pp. 152–159, 2016, doi: 10.1016/J.BIOPHA.2016.04.009.
  • [55] P. Godart, J. Fischman, K. Seto, and D. Hart, “Hydrogen production from aluminum–water reactions subject to varied pressures and temperatures,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11448–11458, 2019, doi: 10.1016/J.IJHYDENE.2019.03.140.
  • [56] S. S. Razavi-Tousi and J. A. Szpunar, “Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum–water reaction,” Int. J. Hydrogen Energy, vol. 38, no. 2, pp. 795–806, 2013, doi: 10.1016/J.IJHYDENE.2012.10.106.
  • [57] B. Alinejad and K. Mahmoodi, “A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water,” Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 7934–7938, 2009, doi: 10.1016/J.IJHYDENE.2009.07.028.
  • [58] K. Mahmoodi and B. Alinejad, “Enhancement of hydrogen generation rate in reaction of aluminum with water,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5227–5232, 2010, doi: 10.1016/J.IJHYDENE.2010.03.016.
  • [59] B. Huang, C. H. Bartholomew, and B. F. Woodfield, “Facile synthesis of mesoporous γ-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides,” Microporous Mesoporous Mater., vol. 183, pp. 37–47, 2014, doi: 10.1016/J.MICROMESO.2013.09.007.
  • [60] A. A. Vostrikov, A. V. Shishkin, and O. N. Fedyaeva, “Conjugated processes of bulk aluminum and hydrogen combustion in water–oxygen mixtures,” Int. J. Hydrogen Energy, vol. 45, no. 1, pp. 1061–1071, 2020, doi: 10.1016/J.IJHYDENE.2019.10.152.
  • [61] X. N. Huang, C. J. Lv, Y. X. Huang, S. Liu, C. Wang, and D. Chen, “Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water,” Int. J. Hydrogen Energy, vol. 36, no. 23, pp. 15119–15124, 2011, doi: 10.1016/J.IJHYDENE.2011.08.073.
  • [62] M. K. Yu, M. J. Kim, B. Y. Yoon, S. K. Oh, D. H. Nam, and H. S. Kwon, “Carbon nanotubes/aluminum composite as a hydrogen source for PEMFC,” Int. J. Hydrogen Energy, vol. 39, no. 34, pp. 19416–19423, 2014, doi: 10.1016/J.IJHYDENE.2014.09.109.
  • [63] L. Zhang, Y. Tang, Y. Duan, L. Hou, L. Cui, F. Yang, and J. Huang, “Green production of hydrogen by hydrolysis of graphene-modified aluminum through infrared light irradiation,” Chem. Eng. J., vol. 320, pp. 160–167, 2017, doi: 10.1016/J.CEJ.2017.03.025.
  • [64] X. N. Huang, C. J. Lv, Y. Wang, H. Y. Shen, D. Chen, and Y. X. Huang, “Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure,” Int. J. Hydrogen Energy, vol. 37, no. 9, pp. 7457–7463, 2012, doi: 10.1016/J.IJHYDENE.2012.01.126.
  • [65] F. Xiao, R. Yang, and J. Li, “Aluminum composites with bismuth nanoparticles and graphene oxide and their application to hydrogen generation in water,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 6082–6089, 2020, doi: 10.1016/J.IJHYDENE.2019.12.105.
  • [66] C. Wei, D. Liu, S. Xu, T. Cui, Q. An, Z. Liu, and Q. Gao, “Effects of Cu additives on the hydrogen generation performance of Al-rich alloys,” J. Alloys Compd., vol. 738, pp. 105–110, 2018, doi: 10.1016/J.JALLCOM.2017.12.152.
  • [67] W. Yang, T. Zhang, J. Zhou, W. Shi, J. Liu, and K. Cen, “Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction,” Energy, vol. 88, pp. 537–543, 2015, doi: 10.1016/J.ENERGY.2015.05.069.
  • [68] H. Liu, F. Yang, B. Yang, Q. Zhang, Y. Chai, and N. Wang, “Rapid hydrogen generation through aluminum–water reaction in alkali solution,” Catal. Today, vol. 318, pp. 52–58, 2018, doi: 10.1016/J.CATTOD.2018.03.030.
  • [69] X. Chen, Z. Zhao, M. Hao, and D. Wang, “Research of hydrogen generation by the reaction of Al-based materials with water,” J. Power Sources, vol. 222, pp. 188–195, 2013, doi: 10.1016/J.JPOWSOUR.2012.08.078.
  • [70] C. R. Jung, A. Kundu, B. Ku, J. H. Gil, H. R. Lee, and J. H. Jang, “Hydrogen from aluminium in a flow reactor for fuel cell applications,” J. Power Sources, vol. 175, no. 1, pp. 490–494, 2008, doi: 10.1016/J.JPOWSOUR.2007.09.064.
  • [71] M. Q. Fan, L. X. Sun, and F. Xu, “Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications,” Energy, vol. 35, no. 7, pp. 2922–2926, 2010, doi: 10.1016/J.ENERGY.2010.03.023.
  • [72] C. Y. Ho and C. H. Huang, “Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water,” Int. J. Hydrogen Energy, vol. 41, no. 6, pp. 3741–3747, 2016, doi: 10.1016/J.IJHYDENE.2015.11.083.
  • [73] C. Chen, B. Lan, K. Liu, H. Wang, X. Guan, S. Dong, and P. Luo, “A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water,” J. Alloys Compd., vol. 808, p. 151733, 2019, doi: 10.1016/J.JALLCOM.2019.151733.
  • [74] V. Shmelev, H. Yang, and C. Yim, “Hydrogen generation by reaction of molten aluminum with water steam,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 15073–15080, 2016, doi: 10.1016/j.ijhydene.2016.05.277.
  • [75] X. Gao, C. Wang, Y. Hou, L. Zhao, W. Bai, and D. Che, “Experimental study on characteristics and mechanism of hydrogen production from aluminium–water reaction for carbon-free power generation,” Fuel, vol. 380, p. 133206, 2025, doi: 10.1016/J.FUEL.2024.133206.
  • [76] Y. Wang, Y. Wei, Z. Zhuang, W. Wei, Y. Duan, Y. Yang, and H. Jin, “Experimental study on hydrogen production characteristics of millimeter aluminum spheres in sub/supercritical water,” Renew. Energy, vol. 240, p. 122221, 2025, doi: 10.1016/J.RENENE.2024.122221.

Alüminyumun Hidrojen Üretimi için Kullanımı: Sürdürülebilir ve Yerinde Bir Yaklaşım

Year 2025, Volume: 1 Issue: 1, 26 - 31, 30.06.2025

Abstract

Uygun fiyatlı ve yaygın olarak bulunan kaynaklardan hidrojen üretimi, hidrojenin sürdürülebilir bir enerji taşıyıcısı olarak daha geniş bir şekilde benimsenmesi için gereklidir. Birim kütle başına önemli enerji içeriği, doğal bolluğu ve geri dönüştürülebilirliği nedeniyle alüminyum, su veya sodyum borohidrit (NaBH4) ve hidrojen klorür (HCl) gibi indirgeyici maddelerle birleştirildiğinde talep üzerine hidrojen üretimi için reaktif bir malzeme olarak önemli ilgi görmüştür. Ayrıca, alüminyum hurdaları hidrojen, alümina, potasyum şap vb. gibi çeşitli yararlı ürünler üretmek için kullanılabilen değerli bir kaynaktır. Alüminyumun hidrojen üretimi için kullanılmasındaki en büyük sınırlama, dış tabakasında suyla reaksiyonunu engelleyen kararlı bir oksit tabakasının (Al2O3) geliştirilmesidir. Bu bariyeri aşmak ve hidrojen verimini artırmak için çeşitli aktivasyon teknikleri araştırılmıştır. Bu inceleme, tuz destekli aktivasyon, metal destekli aktivasyon, parçacık boyutu küçültme vb. dahil olmak üzere alüminyumun reaktifliğini artırmayı amaçlayan çeşitli aktivasyon yöntemlerini eleştirel bir şekilde inceler. Çalışma, sürdürülebilir hidrojen üretimini desteklemek için çevre dostu aktivasyon stratejilerine, yeniden kullanılabilir reaksiyon sistemlerine ve alüminyum hurda geri dönüşümü ve yenilenebilir enerji sistemleriyle entegrasyona olan ihtiyacı vurgulayarak gelecekteki yönler hakkında bir tartışmayla sonuçlanır.

References

  • [1] Renewable Energy - Our World in Data, [Online]. Available: https://ourworldindata.org/renewable-energy. [Accessed: Jun. 4, 2025].
  • [2] A. A. Basheer and I. Ali, “Water photo splitting for green hydrogen energy by green nanoparticles,” Int. J. Hydrogen Energy, vol. 44, 2019, doi: 10.1016/j.ijhydene.2019.03.040.
  • [3] I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, vol. 40, no. 34, 2014, doi: 10.1016/j.ijhydene.2014.12.035.
  • [4] I. Dincer and C. Acar, “Innovation in hydrogen production,” Int. J. Hydrogen Energy, vol. 42, 2017, doi: 10.1016/j.ijhydene.2017.04.107.
  • [5] R. S. El-Emam and H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production,” J. Clean. Prod., vol. 220, 2019, doi: 10.1016/j.jclepro.2019.01.309.
  • [6] A. Ersoz, H. Olgun, and S. Ozdogan, “Reforming options for hydrogen production from fossil fuels for PEM fuel cells,” J. Power Sources, vol. 154, no. 1, 2006, doi: 10.1016/j.jpowsour.2005.02.092.
  • [7] H. Fayaz et al., “An overview of hydrogen as a vehicle fuel,” Renew. Sustain. Energy Rev., vol. 16, 2012, doi: 10.1016/j.rser.2012.06.012.
  • [8] D. W. Hurtubise, D. A. Klosterman, and A. B. Morgan, “Development and demonstration of a deployable apparatus for generating hydrogen from the hydrolysis of aluminum via sodium hydroxide,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 6777–6788, 2018, doi: 10.1016/j.ijhydene.2018.02.087.
  • [9] J. Kim and T. Kim, “Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source,” Appl. Energy, vol. 160, pp. 275–285, 2015, doi: 10.1016/j.apenergy.2015.03.084.
  • [10] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, 2017, doi: 10.1016/j.rser.2016.09.044.
  • [11] J. E. Seo, Y. Kim, Y. Kim, K. Kim, J. H. Lee, D. H. Lee, and S. W. Nam, “Portable ammonia-borane-based H₂ power-pack for unmanned aerial vehicles,” J. Power Sources, vol. 254, pp. 1–8, 2014, doi: 10.1016/j.jpowsour.2013.11.112.
  • [12] J. Eppinger and K. W. Huang, “Formic acid as a hydrogen energy carrier,” ACS Energy Lett., vol. 2, no. 1, pp. 188–195, 2017, doi: 10.1021/acsenergylett.6b00574
  • [13] J. Luo, X. Kang, C. Chen, J. Song, D. Luo, and P. Wang, “Rapidly releasing over 9 wt % of H₂ from NH₃BH₃–Mg or NH₃BH₃–MgH₂ composites around 85 °C,” J. Phys. Chem. C, vol. 120, no. 33, pp. 18435–18441, 2016, doi: 10.1021/acs.jpcc.6b04230.
  • [14] X. Zhang, L. Kam, and T. J. Williams, “Dehydrogenation of ammonia borane through the third equivalent of hydrogen,” Dalton Trans., vol. 45, no. 18, pp. 7392–7397, 2016, doi: 10.1039/c6dt00604c.
  • [15] Fuel Cells | Department of Energy, [Online]. Available: https://www.energy.gov/eere/fuelcells/fuel-cells. [Accessed: Jun. 5, 2025].
  • [16] S. M. Kwon, S. Kang, and T. Kim, “Development of NaBH₄-based hydrogen generator for fuel cell unmanned aerial vehicles with movable fuel cartridge,” Energy Procedia, vol. 158, pp. 2241–2246, 2019, doi: 10.1016/j.egypro.2019.01.443.
  • [17] A. Braunschweiler, Catalytic dehydrogenation of liquid organic hydrogen carriers, M.Sc. thesis, Aalto Univ., Nov. 6, 2018. [Online]. Available: https://aaltodoc.aalto.fi/handle/123456789/34676. [Accessed: Jun. 26, 2025].
  • [18] M. Veronica Sofianos, D. A. Sheppard, E. Ianni, T. D. Humphries, M. R. Rowles, S. Liu, and C. E. Buckley, “Novel synthesis of porous aluminium and its application in hydrogen storage,” J. Alloys Compd., vol. 702, pp. 114–120, 2017, doi: 10.1016/j.jallcom.2017.01.254.
  • [19] Aluminum: uses, applications - Metalpedia, [Online]. Available: http://metalpedia.asianmetal.com/metal/aluminum/application.shtml. [Accessed: Jun. 5, 2025].
  • [20] M. Mahinroosta and A. Allahverdi, “Hazardous aluminum dross characterization and recycling strategies: A critical review,” J. Environ. Manage., vol. 223, pp. 452–468, 2018, doi: 10.1016/J.JENVMAN.2018.06.068.
  • [21] H. Zou, S. Chen, Z. Zhao, and W. Lin, “Hydrogen production by hydrolysis of aluminum,” J. Alloys Compd., vol. 578, pp. 571–576, 2013, doi: 10.1016/j.jallcom.2013.06.016.
  • [22] A. M. Al-Bassam, J. A. Conner, and V. I. Manousiouthakis, “Natural-gas-derived hydrogen in the presence of carbon fuel taxes and concentrated solar power,” ACS Sustainable Chem. Eng., vol. 6, no. 3, pp. 3731–3742, 2018, doi: 10.1021/acssuschemeng.7b02745.
  • [23] L. J. Guo, H. Jin, Z. W. Ge, Y. J. Lu, and C. Q. Cao, “Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission,” Sci. China Technol. Sci., vol. 58, no. 12, pp. 2084–2093, 2015, doi: 10.1007/s11431-015-5967-0.
  • [24] A. Midilli, H. Kucuk, M. E. Topal, U. Akbulut, and I. Dincer, “A comprehensive review on hydrogen production from coal gasification: Challenges and opportunities,” Int. J. Hydrogen Energy, vol. 46, no. 62, pp. 31770–31797, 2021, doi: 10.1016/j.ijhydene.2021.05.088.
  • [25] M. Muresan, C. C. Cormos, and P. S. Agachi, “Techno-economical assessment of coal and biomass gasification-based hydrogen production supply chain system,” Chem. Eng. Res. Des., vol. 91, no. 8, pp. 1376–1386, 2013, doi: 10.1016/j.cherd.2013.02.018.
  • [26] S. S. Seyitoglu, I. Dincer, and A. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2550–2561, 2017, doi: 10.1016/j.ijhydene.2016.08.228.
  • [27] J. Yates, R. Daiyan, R. Patterson, R. Egan, R. Amal, A. Ho-Baillie, and N. L. Chang, “Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis,” Cell Rep. Phys. Sci., vol. 1, no. 10, p. 100209, 2020, doi: 10.1016/j.xcrp.2020.100209.
  • [28] B. W. McQuillan, L. C. Brown, G. E. Besenbruch, R. Tolman, T. Cramer, B. E. Russ and A. Lewandowski, "High efficiency generation of hydrogen fuels using solar thermal chemical splitting of water (Solar Thermo Chemical Splitting for H₂)," ResearchGate, 2010. [Online]. Available: https://www.researchgate.net/publication/273450634. [Accessed: Jun. 26, 2025].
  • [29] X. Chen, Z. Zhao, X. Liu, M. Hao, A. Chen, and Z. Tang, “Hydrogen generation by the hydrolysis reaction of ball-milled aluminium–lithium alloys,” J. Power Sources, vol. 254, pp. 140–146, 2014, doi: 10.1016/j.jpowsour.2013.12.113.
  • [30] E. Czech and T. Troczynski, “Hydrogen generation through massive corrosion of deformed aluminum in water,” Int. J. Hydrogen Energy, vol. 35, no. 3, pp. 1029–1037, 2010, doi: 10.1016/j.ijhydene.2009.11.085.
  • [31] P. Dupiano, D. Stamatis, and E. L. Dreizin, “Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders,” Int. J. Hydrogen Energy, vol. 36, no. 8, pp. 4781–4791, 2011, doi: 10.1016/j.ijhydene.2011.01.062.
  • [32] W. Z. Gai, W. H. Liu, Z. Y. Deng, and J. G. Zhou, “Reaction of Al powder with water for hydrogen generation under ambient condition,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 13132–13140, 2012, doi: 10.1016/j.ijhydene.2012.04.025.
  • [33] A. V. Ilyukhina, A. S. Ilyukhin, and E. I. Shkolnikov, “Hydrogen generation from water by means of activated aluminum,” Int. J. Hydrogen Energy, vol. 37, no. 21, pp. 16445–16452, 2012, doi: 10.1016/j.ijhydene.2012.02.175.
  • [34] Y. Liu, X. Wang, H. Liu, Z. Dong, S. Li, H. Ge, and M. Yan, “Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride,” Energy, vol. 72, pp. 636–641, 2014, doi: 10.1016/j.energy.2014.05.060.
  • [35] G. L. Ma, H. B. Dai, D. W. Zhuang, H. J. Xia, and P. Wang, “Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water,” Int. J. Hydrogen Energy, vol. 37, no. 7, pp. 5874–5880, 2012, doi: 10.1016/j.ijhydene.2011.12.157.
  • [36] H. X. Meng, N. Wang, Y. M. Dong, Z. L. Jia, L. J. Gao, and Y. J. Chai, “Influence of M–B (M = Fe, Co, Ni) on aluminum–water reaction,” J. Power Sources, vol. 268, pp. 468–475, 2014, doi: 10.1016/j.jpowsour.2014.06.094.
  • [37] A. Newell and K. R. Thampi, “Novel amorphous aluminum hydroxide catalysts for aluminum–water reactions to produce H₂ on demand,” Int. J. Hydrogen Energy, vol. 42, no. 37, pp. 23421–23429, 2017, doi: 10.1016/j.ijhydene.2017.04.279.
  • [38] L. Soler, A. M. Candela, J. Macanás, M. Muñoz, and J. Casado, “Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide,” Int. J. Hydrogen Energy, vol. 34, no. 20, pp. 8867–8873, 2009, doi: 10.1016/j.ijhydene.2009.08.008.
  • [39] H. T. Teng, T. Y. Lee, Y. K. Chen, H. W. Wang, and G. Cao, “Effect of Al(OH)₃ on the hydrogen generation of aluminum–water system,” J. Power Sources, vol. 219, pp. 16–21, 2012, doi: 10.1016/j.jpowsour.2012.06.077.
  • [40] H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, “A review on hydrogen production using aluminum and aluminum alloys,” Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 845–853, 2009, doi: 10.1016/j.rser.2008.02.009.
  • [41] Z. Ma, P. Davenport, and G. Saur, “System and technoeconomic analysis of solar thermochemical hydrogen production,” Renew. Energy, vol. 190, pp. 591–604, 2022, doi: 10.1016/j.renene.2022.03.108.
  • [42] B. Wang, S. Li, Y. Pu, and C. Wang, “Gliding arc plasma reforming of toluene for on-board hydrogen production,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 7010–7020, 2020, doi: 10.1016/j.ijhydene.2019.12.184.
  • [43] N. Budhraja, A. Pal, and R. S. Mishra, “Plasma reforming for hydrogen production: Pathways, reactors and storage,” Int. J. Hydrogen Energy, vol. 48, no. 6, pp. 2447–2466, 2023, doi: 10.1016/j.ijhydene.2022.10.143.
  • [44] W. Wang, Y. Ma, G. Chen, C. Quan, J. Yanik, N. Gao, and X. Tu, “Enhanced hydrogen production using a tandem biomass pyrolysis and plasma reforming process,” Fuel Process. Technol., vol. 234, p. 107333, 2022, doi: 10.1016/j.fuproc.2022.107333.
  • [45] J. D. Holladay, J. Hu, D. L. King, and Y. Wang, “An overview of hydrogen production technologies,” Catal. Today, vol. 139, no. 4, pp. 244–260, 2009, doi: 10.1016/j.cattod.2008.08.039.
  • [46] D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, “Syngas production for gas-to-liquids applications: Technologies, issues and outlook,” Fuel Process. Technol., vol. 71, no. 1–3, pp. 139–148, 2001, doi: 10.1016/S0378-3820(01)00140-0.
  • [47] B. Ghorbani, S. Zendehboudi, Y. Zhang, H. Zarrin, and I. Chatzis, “Thermochemical water-splitting structures for hydrogen production: Thermodynamic, economic, and environmental impacts,” Energy Convers. Manag., vol. 297, p. 117599, 2023, doi: 10.1016/j.enconman.2023.117599.
  • [48] D. Kumar and K. Muthukumar, “An overview on activation of aluminium–water reaction for enhanced hydrogen production,” J. Alloys Compd., vol. 835, p. 155189, 2020, doi: 10.1016/j.jallcom.2020.155189.
  • [49] V. Yadav and F. Khalid, “A thermodynamics perspective on a novel aluminium–chlorine (Al–Cl) hybrid thermochemical cycle for hydrogen production,” Int. J. Hydrogen Energy, vol. 50, no. 25, pp. 10001–10013, 2025, doi: 10.1016/J.IJHYDENE.2025.01.084.
  • [50] V. Shmelev, V. Nikolaev, J. H. Lee, and C. Yim, “Hydrogen production by reaction of aluminum with water,” Int. J. Hydrogen Energy, vol. 41, no. 38, pp. 16664–16673, 2016, doi: 10.1016/J.IJHYDENE.2016.05.159.
  • [51] A. V. Ilyukhina, O. V. Kravchenko, and B. M. Bulychev, “Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction,” J. Alloys Compd., vol. 690, pp. 321–329, 2017, doi: 10.1016/J.JALLCOM.2016.08.151.
  • [52] A. I. Nizovskii, S. V. Belkova, A. A. Novikov, and M. V. Trenikhin, “Hydrogen production for fuel cells in reaction of activated aluminum with water,” Procedia Eng., vol. 113, pp. 8–12, 2015, doi: 10.1016/J.PROENG.2015.07.278.
  • [53] V. Rosenband and A. Gany, “Application of activated aluminum powder for generation of hydrogen from water,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 10898–10904, 2010, doi: 10.1016/J.IJHYDENE.2010.07.019.
  • [54] F. Wang, H. Ni, F. Sun, M. Li, and L. Chen, “Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer,” Biomed. Pharmacother., vol. 81, pp. 152–159, 2016, doi: 10.1016/J.BIOPHA.2016.04.009.
  • [55] P. Godart, J. Fischman, K. Seto, and D. Hart, “Hydrogen production from aluminum–water reactions subject to varied pressures and temperatures,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11448–11458, 2019, doi: 10.1016/J.IJHYDENE.2019.03.140.
  • [56] S. S. Razavi-Tousi and J. A. Szpunar, “Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum–water reaction,” Int. J. Hydrogen Energy, vol. 38, no. 2, pp. 795–806, 2013, doi: 10.1016/J.IJHYDENE.2012.10.106.
  • [57] B. Alinejad and K. Mahmoodi, “A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water,” Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 7934–7938, 2009, doi: 10.1016/J.IJHYDENE.2009.07.028.
  • [58] K. Mahmoodi and B. Alinejad, “Enhancement of hydrogen generation rate in reaction of aluminum with water,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5227–5232, 2010, doi: 10.1016/J.IJHYDENE.2010.03.016.
  • [59] B. Huang, C. H. Bartholomew, and B. F. Woodfield, “Facile synthesis of mesoporous γ-alumina with tunable pore size: The effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides,” Microporous Mesoporous Mater., vol. 183, pp. 37–47, 2014, doi: 10.1016/J.MICROMESO.2013.09.007.
  • [60] A. A. Vostrikov, A. V. Shishkin, and O. N. Fedyaeva, “Conjugated processes of bulk aluminum and hydrogen combustion in water–oxygen mixtures,” Int. J. Hydrogen Energy, vol. 45, no. 1, pp. 1061–1071, 2020, doi: 10.1016/J.IJHYDENE.2019.10.152.
  • [61] X. N. Huang, C. J. Lv, Y. X. Huang, S. Liu, C. Wang, and D. Chen, “Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water,” Int. J. Hydrogen Energy, vol. 36, no. 23, pp. 15119–15124, 2011, doi: 10.1016/J.IJHYDENE.2011.08.073.
  • [62] M. K. Yu, M. J. Kim, B. Y. Yoon, S. K. Oh, D. H. Nam, and H. S. Kwon, “Carbon nanotubes/aluminum composite as a hydrogen source for PEMFC,” Int. J. Hydrogen Energy, vol. 39, no. 34, pp. 19416–19423, 2014, doi: 10.1016/J.IJHYDENE.2014.09.109.
  • [63] L. Zhang, Y. Tang, Y. Duan, L. Hou, L. Cui, F. Yang, and J. Huang, “Green production of hydrogen by hydrolysis of graphene-modified aluminum through infrared light irradiation,” Chem. Eng. J., vol. 320, pp. 160–167, 2017, doi: 10.1016/J.CEJ.2017.03.025.
  • [64] X. N. Huang, C. J. Lv, Y. Wang, H. Y. Shen, D. Chen, and Y. X. Huang, “Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure,” Int. J. Hydrogen Energy, vol. 37, no. 9, pp. 7457–7463, 2012, doi: 10.1016/J.IJHYDENE.2012.01.126.
  • [65] F. Xiao, R. Yang, and J. Li, “Aluminum composites with bismuth nanoparticles and graphene oxide and their application to hydrogen generation in water,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 6082–6089, 2020, doi: 10.1016/J.IJHYDENE.2019.12.105.
  • [66] C. Wei, D. Liu, S. Xu, T. Cui, Q. An, Z. Liu, and Q. Gao, “Effects of Cu additives on the hydrogen generation performance of Al-rich alloys,” J. Alloys Compd., vol. 738, pp. 105–110, 2018, doi: 10.1016/J.JALLCOM.2017.12.152.
  • [67] W. Yang, T. Zhang, J. Zhou, W. Shi, J. Liu, and K. Cen, “Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction,” Energy, vol. 88, pp. 537–543, 2015, doi: 10.1016/J.ENERGY.2015.05.069.
  • [68] H. Liu, F. Yang, B. Yang, Q. Zhang, Y. Chai, and N. Wang, “Rapid hydrogen generation through aluminum–water reaction in alkali solution,” Catal. Today, vol. 318, pp. 52–58, 2018, doi: 10.1016/J.CATTOD.2018.03.030.
  • [69] X. Chen, Z. Zhao, M. Hao, and D. Wang, “Research of hydrogen generation by the reaction of Al-based materials with water,” J. Power Sources, vol. 222, pp. 188–195, 2013, doi: 10.1016/J.JPOWSOUR.2012.08.078.
  • [70] C. R. Jung, A. Kundu, B. Ku, J. H. Gil, H. R. Lee, and J. H. Jang, “Hydrogen from aluminium in a flow reactor for fuel cell applications,” J. Power Sources, vol. 175, no. 1, pp. 490–494, 2008, doi: 10.1016/J.JPOWSOUR.2007.09.064.
  • [71] M. Q. Fan, L. X. Sun, and F. Xu, “Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications,” Energy, vol. 35, no. 7, pp. 2922–2926, 2010, doi: 10.1016/J.ENERGY.2010.03.023.
  • [72] C. Y. Ho and C. H. Huang, “Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water,” Int. J. Hydrogen Energy, vol. 41, no. 6, pp. 3741–3747, 2016, doi: 10.1016/J.IJHYDENE.2015.11.083.
  • [73] C. Chen, B. Lan, K. Liu, H. Wang, X. Guan, S. Dong, and P. Luo, “A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water,” J. Alloys Compd., vol. 808, p. 151733, 2019, doi: 10.1016/J.JALLCOM.2019.151733.
  • [74] V. Shmelev, H. Yang, and C. Yim, “Hydrogen generation by reaction of molten aluminum with water steam,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 15073–15080, 2016, doi: 10.1016/j.ijhydene.2016.05.277.
  • [75] X. Gao, C. Wang, Y. Hou, L. Zhao, W. Bai, and D. Che, “Experimental study on characteristics and mechanism of hydrogen production from aluminium–water reaction for carbon-free power generation,” Fuel, vol. 380, p. 133206, 2025, doi: 10.1016/J.FUEL.2024.133206.
  • [76] Y. Wang, Y. Wei, Z. Zhuang, W. Wei, Y. Duan, Y. Yang, and H. Jin, “Experimental study on hydrogen production characteristics of millimeter aluminum spheres in sub/supercritical water,” Renew. Energy, vol. 240, p. 122221, 2025, doi: 10.1016/J.RENENE.2024.122221.
There are 76 citations in total.

Details

Primary Language English
Subjects Electrochemical Technologies
Journal Section Review
Authors

Vinay Yadav 0000-0000-0000-0000

Farrukh Khalid 0000-0003-4600-3496

Publication Date June 30, 2025
Submission Date June 12, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Yadav, V., & Khalid, F. (2025). Utilization of Aluminium for Hydrogen Production: A Sustainable and In-Situ Approach. International Journal of Energy Horizon (IJEH), 1(1), 26-31.

© 2025 Energy Horizon. All rights reserved.
Powered by a commitment to advancing sustainable energy solutions.
ISSN: [] | Contact: []