Research Article
BibTex RIS Cite

Improvement of Haber–Bosch Process for Low Carbon Ammonia Production Through Hybrid Hydrogen Recovery and Energy Recycling

Year 2025, Volume: 1 Issue: 2, 61 - 69, 30.11.2025

Abstract

This study addresses the energy demands of the Haber–Bosch process through the integration of an innovative energy recovery system, thereby eliminating reliance on external energy sources. In contrast to conventional methods, hydrogen was generated via the water–gas shift reaction using water molecules rather than natural gas. Carbon monoxide and carbon dioxide, which are typically released as waste, were reincorporated into the process to enable recovery. Furthermore, the mass flow rates of non-utilizable molecules were converted into electrical energy through turbine systems, thereby enhancing overall process efficiency. Parametric analyses were carried out to investigate the influence of temperature and pressure on yield and conversion rates within the ammonia reactor. These analyses, supported by detailed graphical representations, revealed the pronounced effects of temperature and mass flow rate on process performance. The system was ultimately designed as a self-sustaining configuration that mitigates environmental impacts by transforming harmful by-products into usable electrical energy. Compared with conventional systems, the proposed design fulfills its energy requirements through internal recovery mechanisms and simultaneously reduces the carbon footprint by converting waste gases into electricity. Collectively, the study demonstrates a sustainable and efficient strategy for ammonia production, underscoring the critical role of energy recovery and environmental stewardship in industrial applications.

References

  • [1] M. Alsunousi and E. Kayabasi, “The role of hydrogen in synthetic fuel production strategies,” Int. J. Hydrogen Energy, vol. 54, pp. 1169–1178, 2024. doi: 10.1016/j.ijhydene.2023.11.359.
  • [2] M. Klawitter, S. Wüthrich, P. Cartier, P. Albrecht, K. Herrmann, C. Gößnitzer et al., “Ammonia as a fuel: Optical investigation of turbulent flame propagation of NH₃/Air and NH₃/H₂/N₂/Air flames at engine conditions,” Fuel, 2024. doi: 10.1016/j.fuel.2024.132616.
  • [3] N. Bora, A. Kumar Singh, P. Pal, U. Kumar Sahoo, D. Seth, D. Rathore et al., “Green ammonia production: Process technologies and challenges,” Fuel, vol. 369, 2024. doi: 10.1016/j.fuel.2024.131808.
  • [4] A. G. Olabi, M. A. Abdelkareem, M. Al-Murisi, N. Shehata, A. H. Alami, A. Radwan et al., “Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals,” Energy Convers. Manag., vol. 277, 2023. doi: 10.1016/j.enconman.2022.116594.
  • [5] M. J. Palys, H. Wang, Q. Zhang, and P. Daoutidis, “Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities,” Curr. Opin. Chem. Eng., vol. 31, 2021. doi: 10.1016/j.coche.2020.100667.
  • [6] F. R. Bianchi and B. Bosio, “Modelling of green ammonia production based on solid oxide cells as electrolyser and oxygen separator for Haber-Bosch loop decarbonization,” Int. J. Hydrogen Energy, 2024. doi: 10.1016/j.ijhydene.2024.07.047.
  • [7] P. Mayer, A. Ramirez, G. Pezzella, B. Winter, S. M. Sarathy, J. Gascon et al., “Blue and green ammonia production: A techno-economic and life cycle assessment perspective,” iScience, vol. 26, 2023. doi: 10.1016/j.isci.2023.107389.
  • [8] M. Martín and A. Sánchez, “Biomass pathways to produce green ammonia and urea,” Curr. Opin. Green Sustain. Chem., vol. 47, 2024. doi: 10.1016/j.cogsc.2024.100933.
  • [9] H. Nami, P. V. Hendriksen, and H. L. Frandsen, “Green ammonia production using current and emerging electrolysis technologies,” Renew. Sustain. Energy Rev., vol. 199, p. 114517, 2024. doi: 10.1016/j.rser.2024.114517.
  • [10] D. A. Nowicki, G. D. Agnew, and J. T. S. Irvine, “Green ammonia production via the integration of a solid oxide electrolyser and a Haber-Bosch loop with a series of solid electrolyte oxygen pumps,” Energy Convers. Manag., vol. 280, 2023. doi: 10.1016/j.enconman.2023.116816.
  • [11] A. F. Santos, “Natural Gas Production in the Brazilian Pre-Salt and Sustainable Development with the Generation of Blue Hydrogen and Blue Ammonia,” presented at Day 3, Thu, October 26, 2023.
  • [12] I. Martínez, D. Armaroli, M. Gazzani, and M. C. Romano, “Integration of the Ca–Cu Process in Ammonia Production Plants,” Ind. Eng. Chem. Res., vol. 56, pp. 2526–2539, 2017. doi: 10.1021/acs.iecr.6b04615.
  • [13] Z. Meng, X. Xu, W. Lin, B. Ge, Y. Xie, B. Song et al., “Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain,” Atmos. Chem. Phys., vol. 18, pp. 167–184, 2017.
  • [14] P. Li, Z. Jin, Z. Fang, and G. Yu, “A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate,” Energy Environ. Sci., 2021.
  • [15] R. Lan, J. T. S. Irvine, and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials,” Int. J. Hydrogen Energy, vol. 37, pp. 1482–1494, 2012. doi: 10.1016/j.ijhydene.2011.10.004.
  • [16] V. Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, “Ammonia for power,” Prog. Energy Combust. Sci., vol. 69, pp. 63–102, 2018. doi: 10.1016/j.pecs.2018.07.001.
  • [17] Y. Choi and H. G. Stenger, “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen,” J. Power Sources, vol. 124, pp. 432–439, 2003. doi: 10.1016/S0378-7753(03)00614-1.
  • [18] D. K. Lee, K. Y. Koo, D. J. Seo, and W. L. Yoon, “Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station,” Renew. Energy, vol. 42, pp. 234–242, 2012. doi: 10.1016/j.renene.2011.07.040.

Hibrit Hidrojen Geri Kazanımı ve Enerji Geri Dönüşümü Yoluyla Düşük Karbonlu Amonyak Üretimi için Haber-Bosch Prosesinin İyileştirilmesi

Year 2025, Volume: 1 Issue: 2, 61 - 69, 30.11.2025

Abstract

Bu çalışma, yenilikçi bir enerji geri kazanım sisteminin entegrasyonu yoluyla Haber-Bosch prosesinin enerji taleplerini ele alarak harici enerji kaynaklarına olan bağımlılığı ortadan kaldırmaktadır. Geleneksel yöntemlerin aksine, hidrojen, doğal gaz yerine su molekülleri kullanılarak su-gaz dönüşüm reaksiyonu yoluyla üretilmiştir. Genellikle atık olarak salınan karbon monoksit ve karbondioksit, geri kazanımı sağlamak için prosese yeniden dahil edilmiştir. Ayrıca, kullanılamayan moleküllerin kütle akış hızları, türbin sistemleri aracılığıyla elektrik enerjisine dönüştürülerek genel proses verimliliği artırılmıştır. Amonyak reaktöründe sıcaklık ve basıncın verim ve dönüşüm hızları üzerindeki etkisini araştırmak için parametrik analizler gerçekleştirilmiştir. Ayrıntılı grafiksel gösterimlerle desteklenen bu analizler, sıcaklık ve kütle akış hızının proses performansı üzerindeki belirgin etkilerini ortaya koymuştur. Sistem, zararlı yan ürünleri kullanılabilir elektrik enerjisine dönüştürerek çevresel etkileri azaltan, kendi kendini idame ettiren bir konfigürasyon olarak tasarlanmıştır. Geleneksel sistemlerle karşılaştırıldığında, önerilen tasarım enerji gereksinimlerini dahili geri kazanım mekanizmaları aracılığıyla karşılamakta ve aynı zamanda atık gazları elektriğe dönüştürerek karbon ayak izini azaltmaktadır. Çalışma toplu olarak, amonyak üretimi için sürdürülebilir ve verimli bir stratejiyi ortaya koymakta ve endüstriyel uygulamalarda enerji geri kazanımı ve çevre yönetiminin kritik rolünü vurgulamaktadır.

References

  • [1] M. Alsunousi and E. Kayabasi, “The role of hydrogen in synthetic fuel production strategies,” Int. J. Hydrogen Energy, vol. 54, pp. 1169–1178, 2024. doi: 10.1016/j.ijhydene.2023.11.359.
  • [2] M. Klawitter, S. Wüthrich, P. Cartier, P. Albrecht, K. Herrmann, C. Gößnitzer et al., “Ammonia as a fuel: Optical investigation of turbulent flame propagation of NH₃/Air and NH₃/H₂/N₂/Air flames at engine conditions,” Fuel, 2024. doi: 10.1016/j.fuel.2024.132616.
  • [3] N. Bora, A. Kumar Singh, P. Pal, U. Kumar Sahoo, D. Seth, D. Rathore et al., “Green ammonia production: Process technologies and challenges,” Fuel, vol. 369, 2024. doi: 10.1016/j.fuel.2024.131808.
  • [4] A. G. Olabi, M. A. Abdelkareem, M. Al-Murisi, N. Shehata, A. H. Alami, A. Radwan et al., “Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals,” Energy Convers. Manag., vol. 277, 2023. doi: 10.1016/j.enconman.2022.116594.
  • [5] M. J. Palys, H. Wang, Q. Zhang, and P. Daoutidis, “Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities,” Curr. Opin. Chem. Eng., vol. 31, 2021. doi: 10.1016/j.coche.2020.100667.
  • [6] F. R. Bianchi and B. Bosio, “Modelling of green ammonia production based on solid oxide cells as electrolyser and oxygen separator for Haber-Bosch loop decarbonization,” Int. J. Hydrogen Energy, 2024. doi: 10.1016/j.ijhydene.2024.07.047.
  • [7] P. Mayer, A. Ramirez, G. Pezzella, B. Winter, S. M. Sarathy, J. Gascon et al., “Blue and green ammonia production: A techno-economic and life cycle assessment perspective,” iScience, vol. 26, 2023. doi: 10.1016/j.isci.2023.107389.
  • [8] M. Martín and A. Sánchez, “Biomass pathways to produce green ammonia and urea,” Curr. Opin. Green Sustain. Chem., vol. 47, 2024. doi: 10.1016/j.cogsc.2024.100933.
  • [9] H. Nami, P. V. Hendriksen, and H. L. Frandsen, “Green ammonia production using current and emerging electrolysis technologies,” Renew. Sustain. Energy Rev., vol. 199, p. 114517, 2024. doi: 10.1016/j.rser.2024.114517.
  • [10] D. A. Nowicki, G. D. Agnew, and J. T. S. Irvine, “Green ammonia production via the integration of a solid oxide electrolyser and a Haber-Bosch loop with a series of solid electrolyte oxygen pumps,” Energy Convers. Manag., vol. 280, 2023. doi: 10.1016/j.enconman.2023.116816.
  • [11] A. F. Santos, “Natural Gas Production in the Brazilian Pre-Salt and Sustainable Development with the Generation of Blue Hydrogen and Blue Ammonia,” presented at Day 3, Thu, October 26, 2023.
  • [12] I. Martínez, D. Armaroli, M. Gazzani, and M. C. Romano, “Integration of the Ca–Cu Process in Ammonia Production Plants,” Ind. Eng. Chem. Res., vol. 56, pp. 2526–2539, 2017. doi: 10.1021/acs.iecr.6b04615.
  • [13] Z. Meng, X. Xu, W. Lin, B. Ge, Y. Xie, B. Song et al., “Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain,” Atmos. Chem. Phys., vol. 18, pp. 167–184, 2017.
  • [14] P. Li, Z. Jin, Z. Fang, and G. Yu, “A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate,” Energy Environ. Sci., 2021.
  • [15] R. Lan, J. T. S. Irvine, and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials,” Int. J. Hydrogen Energy, vol. 37, pp. 1482–1494, 2012. doi: 10.1016/j.ijhydene.2011.10.004.
  • [16] V. Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, “Ammonia for power,” Prog. Energy Combust. Sci., vol. 69, pp. 63–102, 2018. doi: 10.1016/j.pecs.2018.07.001.
  • [17] Y. Choi and H. G. Stenger, “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen,” J. Power Sources, vol. 124, pp. 432–439, 2003. doi: 10.1016/S0378-7753(03)00614-1.
  • [18] D. K. Lee, K. Y. Koo, D. J. Seo, and W. L. Yoon, “Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station,” Renew. Energy, vol. 42, pp. 234–242, 2012. doi: 10.1016/j.renene.2011.07.040.
There are 18 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Akın Doğan 0009-0009-4564-9536

Erhan Kayabaşı 0000-0002-3603-6211

Publication Date November 30, 2025
Submission Date September 22, 2025
Acceptance Date November 2, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

APA Doğan, A., & Kayabaşı, E. (2025). Improvement of Haber–Bosch Process for Low Carbon Ammonia Production Through Hybrid Hydrogen Recovery and Energy Recycling. International Journal of Energy Horizon (IJEH), 1(2), 61-69.

© 2025 Energy Horizon. All rights reserved.
Powered by a commitment to advancing sustainable energy solutions.
ISSN: 3108-3722 | Contact:  ijeh@aybu.edu.tr