Research Article
BibTex RIS Cite

Katı Atık Enerji Santralinde Gaz Motoru ile Birleştirilmiş S-CO₂ Döngüsünün Eksergoekonomik Değerlendirmesi

Year 2025, Volume: 1 Issue: 2, 70 - 79, 30.11.2025

Abstract

Bu çalışmada, Türkiye'nin Bayburt şehrinde bulunan bir belediye katı atık termik santralinin (KAT) bir gaz motorundan süperkritik karbondioksit (S-CO₂) çevrimi uygulanarak egzoz atık ısısının geri kazanımı incelenmiştir. Kurulu gücü 1450 kW olan santralde, S-CO₂ sisteminin entegre edilmesiyle yaklaşık %7,5 ekstra güç üretimine karşılık gelen 108,65 kW ek güç üretilebilmektedir. Santralin gerçek verileri kullanılarak termodinamik model geliştirilmiş ve sistem performansının doğru bir şekilde değerlendirilmesi sağlanmıştır. Geliştirilen çevrimin enerjetik ve ekserjetik verimlilikleri, enerji transferi ve ekserji yıkım değerleri açısından belirlenmiştir. Ayrıca, santral bileşenleri için maliyet dağılımı ve yatırım öngörüleri sağlayan Özgül Ekserji Maliyetlendirme (SPECO) yöntemi kullanılarak eksergoekonomik analizler gerçekleştirilmiştir. Sonuçlar, S-CO₂ çevriminin birleştirilmesinin hem enerji hem de ekserji verimliliğini artırdığını ve aynı zamanda genel ekonomik performansı da iyileştirdiğini ortaya koymaktadır. Sonuç olarak önerilen sistem, katı atık bazlı enerji üretim santrallerinde atık ısının geri kazanımı için sürdürülebilir ve etkili bir çözüm sunmaktadır.

Supporting Institution

TÜBİTAK

Project Number

114M142

Thanks

Bu çalışma, TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) tarafından 114M142 numaralı proje kapsamında desteklenmiştir. Yazarlar TÜBİTAK'a ve CEV (Temiz Enerji ve Araçlar) enerji şirketine teşekkürlerini sunarlar.

References

  • [1] O. Olumayegun, M. Wang, and G. Kelsall, “Closed-cycle gas turbine for power generation: A state-of-the-art review,” Fuel, vol. 180, pp. 694–717, 2016.
  • [2] Reuters Echogen Power Systems, “Waste heat recovery system available as turnkey solution 1,” 2014–2015.
  • [3] Y. Ahn, S. Bae, M. Kim, S. Cho, S. Baik, J. Lee, and J. E. Cha, “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, pp. 647–661, 2015.
  • [4] A. D. Akbari and S. M. S. Mahmoudi, “Thermoeconomic analysis & optimization of the combined supercritical CO2 recompression Brayton/organic Rankine cycle,” Energy, vol. 78, pp. 501–512, 2014.
  • [5] J. Cha, T. Lee, J. Eoh, S. Seong, S. Kim, D. Kim, M. H. Kim, T.-W. Kim, and K.-Y. Suh, “Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor,” Nucl. Eng. Technol., vol. 41, pp. 1025–1044, 2009.
  • [6] S. Ishiyama, Y. Muto, Y. Kato, S. Nishio, T. Hayashi, and Y. Nomoto, “Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor,” Prog. Nucl. Energy, vol. 50, pp. 325–332, 2008.
  • [7] F. Mohammadkhani, N. Shokati, S. M. S. Mahmoudi, M. Yari, and M. A. Rosen, “Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic Rankine cycles,” Energy, vol. 65, pp. 533–543, 2014.
  • [8] X. Wang and Y. Dai, “An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles,” Energy Convers. Manage., vol. 126, pp. 561–572, 2016.
  • [9] J. Wang, Z. Yan, M. Wang, M. Li, and Y. Dai, “Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm,” Energy Convers. Manage., vol. 71, pp. 146–158, 2013.
  • [10] J. Wang, Z. Sun, Y. Dai, and S. Ma, “Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network,” Appl. Energy, vol. 87, pp. 1317–1324, 2010.
  • [11] A. Kouta, A. F. Al-Sulaiman, and M. Atif, “Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system,” Energy, vol. 119, pp. 996–1009, 2017.
  • [12] D. Milani, M. Tri Luu, R. McNaughton, and A. Abbas, “A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: dynamic modelling and control strategies,” J. Supercrit. Fluids, vol. 120, pp. 113–124, 2017.
  • [13] H. Nami, S. M. S. Mahmoudi, and A. Nemati, “Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2),” Appl. Therm. Eng., vol. 110, pp. 1315–1330, 2017.
  • [14] M. H. Ahmadi, M. Mehrpooya, and F. Pourfayaz, “Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink,” Energy Convers. Manage., vol. 119, pp. 422–434, 2016.
  • [15] M. S. Kim, Y. Ahn, B. Kim, and J. I. Lee, “Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle,” Energy, vol. 111, pp. 893–909, 2016.
  • [16] F. A. Boyaghchi and H. Safari, “Parametric study and multi-criteria optimization of total exergetic and cost rates improvement potentials of a new geothermal based quadruple energy system,” Energy Convers. Manage., vol. 137, pp. 130–141, 2017.
  • [17] Y. Feng, Y. Zhang, B. Li, J. Yang, and Y. Shi, “Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC),” Energy Convers. Manage., vol. 96, pp. 58–71, 2015.
  • [18] Z. Hajabdollahi and P. F. Fu, “Multi-objective-based configuration optimization of SOFC-GT cogeneration plant,” Appl. Therm. Eng., vol. 112, pp. 549–559, 2017.
  • [19] V. Jain, G. Sachdeva, S. S. Kachhwaha, and B. Patel, “Thermo-economic and environmental analyses based multi-objective optimization of vapor compression absorption cascaded refrigeration system using NSGA-II technique,” Energy Convers. Manage., vol. 113, pp. 230–242, 2016.
  • [20] Y. Li, S. Liao, and G. Liu, “Thermo-economic multi-objective optimization for a solardish Brayton system using NSGA-II and decision making,” Electr. Power Energy Syst., vol. 64, pp. 167–175, 2015.
  • [21] O. Güngör, A. Tozlu, C. Arslantürk, and E. Özahi, “District heating based on exhaust gas produced from end-of-life tires in Erzincan: Thermoeconomic analysis and optimization,” Energy, vol. 294, p. 130755, 2024.
  • [22] A. Tozlu, E. Özahi, and A. Abuşoğlu, “Waste to Energy Technologies for Municipal Solid Waste Management in Gaziantep,” Renew. Sustain. Energy Rev., vol. 54, pp. 809–815, 2016.
  • [23] A. Tozlu, E. Özahi, and A. Abuşoğlu, “Energetic and Exergetic Analyses of a Solid Waste Power Plant using Aspen Plus,” Int. J. Energy, vol. 10, pp. 44–47, 2016.
  • [24] V. Zare, S. M. S. Mahmoudi, and M. Yari, “An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia-water power/cooling cycle,” Energy, vol. 61, pp. 397–409, 2013.
  • [25] H. Ozcan and I. Dincer, “Exergoeconomic optimization of a new four-step magnesium chlorine cycle,” Int. J. Hydrogen Energy, vol. 42, pp. 2435–2445, 2017.

Exergoeconomic Evaluation of a S-CO₂ Cycle Coupled with a Gas Engine in a Solid Waste Power Plant

Year 2025, Volume: 1 Issue: 2, 70 - 79, 30.11.2025

Abstract

In this study, the exhaust waste heat recovery from a gas engine of a municipal solid waste power plant (MSWPP) in Bayburt city, Turkey, through the application of a supercritical carbon dioxide (S-CO₂) cycle was investigated. The plant with an installed power capacity of 1450 kW, can be possible to generate an additional 108.65 kW of power by integrating the S-CO₂ system, corresponding to approximately 7.5% extra power production. A thermodynamic model was developed using actual data of the plant, enabling accurate assessment of system performance. The energetic and exergetic efficiencies of the developed cycle were determined in terms of energy transfer and exergy destruction values. Exergoeconomic analyses were also carried out using the Specific Exergy Costing (SPECO) method, providing cost allocation and investment insights for the plant components. The results reveal that the coupling of S-CO₂ cycle increases both the energy and exergy efficiencies, while also improving the overall economic performance. Consequently, the proposed system offers a sustainable and effective solution for the recovery of waste heat in solid waste-based power generation stations.

Supporting Institution

TÜBİTAK

Project Number

114M142

Thanks

This study is supported by TÜBİTAK (the Scientific and Technological Research Council of Turkey) with the project under the grant number of 114M142. The authors would like to thank TUBİTAK and CEV (Clean Energy & Vehicles) energy.

References

  • [1] O. Olumayegun, M. Wang, and G. Kelsall, “Closed-cycle gas turbine for power generation: A state-of-the-art review,” Fuel, vol. 180, pp. 694–717, 2016.
  • [2] Reuters Echogen Power Systems, “Waste heat recovery system available as turnkey solution 1,” 2014–2015.
  • [3] Y. Ahn, S. Bae, M. Kim, S. Cho, S. Baik, J. Lee, and J. E. Cha, “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, pp. 647–661, 2015.
  • [4] A. D. Akbari and S. M. S. Mahmoudi, “Thermoeconomic analysis & optimization of the combined supercritical CO2 recompression Brayton/organic Rankine cycle,” Energy, vol. 78, pp. 501–512, 2014.
  • [5] J. Cha, T. Lee, J. Eoh, S. Seong, S. Kim, D. Kim, M. H. Kim, T.-W. Kim, and K.-Y. Suh, “Development of a supercritical CO2 Brayton energy conversion system coupled with a sodium cooled fast reactor,” Nucl. Eng. Technol., vol. 41, pp. 1025–1044, 2009.
  • [6] S. Ishiyama, Y. Muto, Y. Kato, S. Nishio, T. Hayashi, and Y. Nomoto, “Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor,” Prog. Nucl. Energy, vol. 50, pp. 325–332, 2008.
  • [7] F. Mohammadkhani, N. Shokati, S. M. S. Mahmoudi, M. Yari, and M. A. Rosen, “Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic Rankine cycles,” Energy, vol. 65, pp. 533–543, 2014.
  • [8] X. Wang and Y. Dai, “An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles,” Energy Convers. Manage., vol. 126, pp. 561–572, 2016.
  • [9] J. Wang, Z. Yan, M. Wang, M. Li, and Y. Dai, “Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm,” Energy Convers. Manage., vol. 71, pp. 146–158, 2013.
  • [10] J. Wang, Z. Sun, Y. Dai, and S. Ma, “Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network,” Appl. Energy, vol. 87, pp. 1317–1324, 2010.
  • [11] A. Kouta, A. F. Al-Sulaiman, and M. Atif, “Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system,” Energy, vol. 119, pp. 996–1009, 2017.
  • [12] D. Milani, M. Tri Luu, R. McNaughton, and A. Abbas, “A comparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles: dynamic modelling and control strategies,” J. Supercrit. Fluids, vol. 120, pp. 113–124, 2017.
  • [13] H. Nami, S. M. S. Mahmoudi, and A. Nemati, “Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2),” Appl. Therm. Eng., vol. 110, pp. 1315–1330, 2017.
  • [14] M. H. Ahmadi, M. Mehrpooya, and F. Pourfayaz, “Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink,” Energy Convers. Manage., vol. 119, pp. 422–434, 2016.
  • [15] M. S. Kim, Y. Ahn, B. Kim, and J. I. Lee, “Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle,” Energy, vol. 111, pp. 893–909, 2016.
  • [16] F. A. Boyaghchi and H. Safari, “Parametric study and multi-criteria optimization of total exergetic and cost rates improvement potentials of a new geothermal based quadruple energy system,” Energy Convers. Manage., vol. 137, pp. 130–141, 2017.
  • [17] Y. Feng, Y. Zhang, B. Li, J. Yang, and Y. Shi, “Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC),” Energy Convers. Manage., vol. 96, pp. 58–71, 2015.
  • [18] Z. Hajabdollahi and P. F. Fu, “Multi-objective-based configuration optimization of SOFC-GT cogeneration plant,” Appl. Therm. Eng., vol. 112, pp. 549–559, 2017.
  • [19] V. Jain, G. Sachdeva, S. S. Kachhwaha, and B. Patel, “Thermo-economic and environmental analyses based multi-objective optimization of vapor compression absorption cascaded refrigeration system using NSGA-II technique,” Energy Convers. Manage., vol. 113, pp. 230–242, 2016.
  • [20] Y. Li, S. Liao, and G. Liu, “Thermo-economic multi-objective optimization for a solardish Brayton system using NSGA-II and decision making,” Electr. Power Energy Syst., vol. 64, pp. 167–175, 2015.
  • [21] O. Güngör, A. Tozlu, C. Arslantürk, and E. Özahi, “District heating based on exhaust gas produced from end-of-life tires in Erzincan: Thermoeconomic analysis and optimization,” Energy, vol. 294, p. 130755, 2024.
  • [22] A. Tozlu, E. Özahi, and A. Abuşoğlu, “Waste to Energy Technologies for Municipal Solid Waste Management in Gaziantep,” Renew. Sustain. Energy Rev., vol. 54, pp. 809–815, 2016.
  • [23] A. Tozlu, E. Özahi, and A. Abuşoğlu, “Energetic and Exergetic Analyses of a Solid Waste Power Plant using Aspen Plus,” Int. J. Energy, vol. 10, pp. 44–47, 2016.
  • [24] V. Zare, S. M. S. Mahmoudi, and M. Yari, “An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia-water power/cooling cycle,” Energy, vol. 61, pp. 397–409, 2013.
  • [25] H. Ozcan and I. Dincer, “Exergoeconomic optimization of a new four-step magnesium chlorine cycle,” Int. J. Hydrogen Energy, vol. 42, pp. 2435–2445, 2017.
There are 25 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Mechanical Engineering (Other)
Journal Section Research Article
Authors

Alperen Tozlu 0000-0002-2610-5279

Marta Trninic 0000-0001-6916-6162

Emrah Özahi 0000-0003-3940-9500

Project Number 114M142
Publication Date November 30, 2025
Submission Date October 10, 2025
Acceptance Date November 15, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

APA Tozlu, A., Trninic, M., & Özahi, E. (2025). Exergoeconomic Evaluation of a S-CO₂ Cycle Coupled with a Gas Engine in a Solid Waste Power Plant. International Journal of Energy Horizon (IJEH), 1(2), 70-79.

© 2025 Energy Horizon. All rights reserved.
Powered by a commitment to advancing sustainable energy solutions.
ISSN: 3108-3722 | Contact:  ijeh@aybu.edu.tr