Research Article
BibTex RIS Cite

SENTIMENT ANALYSIS of CUSTOMER REVIEW in ONLINE FOOD DELIVERY INDUSTRY

Year 2022, , 196 - 207, 01.10.2022
https://doi.org/10.47933/ijeir.1174377

Abstract

During the COVID-19 crisis, the fact that customers prefer to have foods delivery to their door instead of going in a restaurant has fueled the growing of Online Food Delivery (OFD). Nearly all restaurants like UberEats and DoorDash coming online and bringing OFD on board, online platform user reviews of a company's performance have grown in importance as a source of data. OFD organizations give great importance on collecting complaints from customer feedback and using data effectively to identify fields of development to increase customer satisfaction. Online reviews remain important during the COVID-19 pandemic as they help customers make safe food decisions. It is one of the basic needs of company managers to get customer opinions about the products and services provided by companies and to develop products and services. This work uses a Natural Language Processing (NLP) based approach. Sentiment Analysis is an area of study that uses user-shared emotions on websites and social networking sites to discover meaningful information. It is helpful to categorize emotions as positive, negative, or neutral using this type of analysis. We have performed experimentations using three modes i.e. Unigram, Bigram, and Trigram. The findings indicate that the main issues with the OFD company are primarily related to food delivery issues, and both organizations generally experience the same issues. The proposed method can be used as a guide for catering companies to evaluate customer satisfaction and complaints and develop marketing strategies to o acquire new customers and increase their market share.

References

  • [1] Brewer, P., Sebby, A. G. (2021). The effect of online restaurant menus on consumers’ purchase intentions during the COVID-19 pandemic. International Journal of Hospitality Management, 94, 102777.
  • [2] Elvandari, C. D. R., Sukartiko, A. C., Nugrahini, A. D. (2018). Identification of technical requirement for improving quality of local online food delivery service in Yogyakarta. Journal of Industrial and Information Technology in Agriculture, 1(2), 1-7.
  • [3] Raj, M., Sundararajan, A., You, C., (2021). COVID-19 and Digital Resilience. Evidence from Uber Eats NYU Stern School of Business, 2021. https://doi.org/10.2139/ssrn.3625638.
  • [4] Yang, Y., Liu, H., Chen, X. (2020). COVID-19 and restaurant demand: early effects of the pandemic and stay-at-home orders. International Journal of Contemporary Hospitality Management.
  • [5] Kim, J., Kim, J., Wang, Y. (2021). Uncertainty risks and strategic reaction of restaurant firms amid COVID-19: Evidence from China. International Journal of Hospitality Management, 92, 102752.
  • [6] https://www.statista.com/statistics/1294498/doordash-annual-revenue/ Access Date: 10.08.2022.
  • [7] https://www.statista.com/statistics/1235816/revenue-uber-eats-worldwide/ Access Date:10.08.2022.
  • [8] Alasmari, S.F., Dahab, M. (2017), “Sentiment detection, recognition and aspect identification”, International Journal of Computer Applications, Vol. 975, p. 8887.
  • [9] Meena, P., Kumar, G. (2022). Online food delivery companies' performance and consumers expectations during Covid-19: An investigation using machine learning approach. Journal of Retailing and Consumer Services, 68, 103052.
  • [10] Trivedi, S. K., Singh, A. (2021). Twitter sentiment analysis of app based online food delivery companies. Global Knowledge, Memory and Communication.
  • [11] Roberts, C. (2020). DoorDash, Grubhub, Postmates, and Uber Eats: how food delivery services perform. Consumer Reports, 21.
  • [12] Adak, A., Pradhan, B., Shukla, N. (2022). Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods, 11(10), 1500.
  • [13] McCain, S. L. C., Lolli, J., Liu, E., Lin, L. C. (2021). An analysis of a third-party food delivery app during the COVID-19 pandemic. British Food Journal.
  • [14] Valera, M. and Patel, Y. (2018), “A peculiar sentiment analysis advancement in big data”, Journal of Physics: Conference Series, Vol. 933 No. 1, p. 012015.
  • [15] Curry, D. (2021), “DoorDash revenue and usage statistics (2021)”, available at: https://www. businessofapps.com/data/doordash-statistics/ (accessed 10.08.2022).
  • [16] Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
  • [17] Liu, S., Jiang, H., Chen, S., Ye, J., He, R., Sun, Z. (2020). Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning. Transportation Research Part E: Logistics and Transportation Review, 142, 102070.
  • [18] Mohammad, S.M. and Turney, P.D. (2013), “Crowdsourcing a word–emotion association lexicon”, Computational Intelligence, Vol. 29 No. 3, pp. 436-465.
  • [19] Okita, T. (2009). Data cleaning for word alignment. Association for Computational Linguistics.
  • [20] Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., & Neves, L. T. (2020). Unified benchmark and comparative evaluation for tweet classification. Findings of the Association for Computational Linguistics.
  • [21] Ye, Y. (2015). ONLINE TO OFFLINE FOOD DELIVERY SITUATION AND CHALLENGES IN CHINA. Case company Ele. me.

ÇEVRİMİÇİ GIDA TESLİMAT SEKTÖRÜNDE MÜŞTERİ YORUMLARININ DUYGU ANALİZİ

Year 2022, , 196 - 207, 01.10.2022
https://doi.org/10.47933/ijeir.1174377

Abstract

COVID-19 krizi sırasında, müşterilerin bir restorana gitmek yerine yemeklerini kapılarına teslim etmeyi tercih etmesi, Online Yemek Teslimatının (OFD) büyümesini hızlandırdı. UberEats ve DoorDash gibi hemen hemen tüm restoranların çevrimiçi hale gelmesi ve OFD'yi dahil etmesi, bir şirketin performansına ilişkin çevrimiçi platform kullanıcı incelemelerinin bir veri kaynağı olarak önemi arttı. OFD kuruluşları, müşteri geri bildirimlerinden gelen şikayetleri toplamaya ve müşteri memnuniyetini artırmak için gelişim alanlarını belirlemek için verileri etkin bir şekilde kullanmaya büyük önem vermektedir. Müşterilerin güvenli gıda kararları vermesine yardımcı olduklarından, COVID-19 salgını sırasında çevrimiçi incelemeler önemini korumaya devam ediyor. Firmaların sunduğu ürün ve hizmetler hakkında müşteri görüşlerini almak, ürün ve hizmetler geliştirmek firma yöneticilerinin temel ihtiyaçlarından biridir. Bu çalışma, Doğal Dil İşleme (NLP) tabanlı bir yaklaşım kullanır. Duygu Analizi, anlamlı bilgileri keşfetmek için web sitelerinde ve sosyal ağ sitelerinde kullanıcı tarafından paylaşılan duyguları kullanan bir çalışma alanıdır. Bu tür analizleri kullanarak duyguları olumlu, olumsuz veya nötr olarak sınıflandırmak yararlıdır. Unigram, Bigram ve Trigram olmak üzere üç mod kullanarak deneyler gerçekleştirdik. Bulgular, OFD şirketiyle ilgili ana sorunların öncelikle gıda teslimatı sorunlarıyla ilgili olduğunu ve her iki kuruluşun da genel olarak aynı sorunları yaşadığını gösteriyor. Önerilen yöntem, catering şirketlerinin müşteri memnuniyet ve şikayetlerini değerlendirmeleri ve yeni müşteriler kazanmak ve pazar paylarını artırmak için pazarlama stratejileri geliştirmeleri için bir rehber olarak kullanılabilir.

References

  • [1] Brewer, P., Sebby, A. G. (2021). The effect of online restaurant menus on consumers’ purchase intentions during the COVID-19 pandemic. International Journal of Hospitality Management, 94, 102777.
  • [2] Elvandari, C. D. R., Sukartiko, A. C., Nugrahini, A. D. (2018). Identification of technical requirement for improving quality of local online food delivery service in Yogyakarta. Journal of Industrial and Information Technology in Agriculture, 1(2), 1-7.
  • [3] Raj, M., Sundararajan, A., You, C., (2021). COVID-19 and Digital Resilience. Evidence from Uber Eats NYU Stern School of Business, 2021. https://doi.org/10.2139/ssrn.3625638.
  • [4] Yang, Y., Liu, H., Chen, X. (2020). COVID-19 and restaurant demand: early effects of the pandemic and stay-at-home orders. International Journal of Contemporary Hospitality Management.
  • [5] Kim, J., Kim, J., Wang, Y. (2021). Uncertainty risks and strategic reaction of restaurant firms amid COVID-19: Evidence from China. International Journal of Hospitality Management, 92, 102752.
  • [6] https://www.statista.com/statistics/1294498/doordash-annual-revenue/ Access Date: 10.08.2022.
  • [7] https://www.statista.com/statistics/1235816/revenue-uber-eats-worldwide/ Access Date:10.08.2022.
  • [8] Alasmari, S.F., Dahab, M. (2017), “Sentiment detection, recognition and aspect identification”, International Journal of Computer Applications, Vol. 975, p. 8887.
  • [9] Meena, P., Kumar, G. (2022). Online food delivery companies' performance and consumers expectations during Covid-19: An investigation using machine learning approach. Journal of Retailing and Consumer Services, 68, 103052.
  • [10] Trivedi, S. K., Singh, A. (2021). Twitter sentiment analysis of app based online food delivery companies. Global Knowledge, Memory and Communication.
  • [11] Roberts, C. (2020). DoorDash, Grubhub, Postmates, and Uber Eats: how food delivery services perform. Consumer Reports, 21.
  • [12] Adak, A., Pradhan, B., Shukla, N. (2022). Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods, 11(10), 1500.
  • [13] McCain, S. L. C., Lolli, J., Liu, E., Lin, L. C. (2021). An analysis of a third-party food delivery app during the COVID-19 pandemic. British Food Journal.
  • [14] Valera, M. and Patel, Y. (2018), “A peculiar sentiment analysis advancement in big data”, Journal of Physics: Conference Series, Vol. 933 No. 1, p. 012015.
  • [15] Curry, D. (2021), “DoorDash revenue and usage statistics (2021)”, available at: https://www. businessofapps.com/data/doordash-statistics/ (accessed 10.08.2022).
  • [16] Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
  • [17] Liu, S., Jiang, H., Chen, S., Ye, J., He, R., Sun, Z. (2020). Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning. Transportation Research Part E: Logistics and Transportation Review, 142, 102070.
  • [18] Mohammad, S.M. and Turney, P.D. (2013), “Crowdsourcing a word–emotion association lexicon”, Computational Intelligence, Vol. 29 No. 3, pp. 436-465.
  • [19] Okita, T. (2009). Data cleaning for word alignment. Association for Computational Linguistics.
  • [20] Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., & Neves, L. T. (2020). Unified benchmark and comparative evaluation for tweet classification. Findings of the Association for Computational Linguistics.
  • [21] Ye, Y. (2015). ONLINE TO OFFLINE FOOD DELIVERY SITUATION AND CHALLENGES IN CHINA. Case company Ele. me.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Kevser Şahinbaş 0000-0002-8076-3678

Arda Avcı 0000-0002-7336-3414

Publication Date October 1, 2022
Acceptance Date September 22, 2022
Published in Issue Year 2022

Cite

APA Şahinbaş, K., & Avcı, A. (2022). SENTIMENT ANALYSIS of CUSTOMER REVIEW in ONLINE FOOD DELIVERY INDUSTRY. International Journal of Engineering and Innovative Research, 4(3), 196-207. https://doi.org/10.47933/ijeir.1174377

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License