Research Article
BibTex RIS Cite

Residual Stress Analysis in Machining of a Near Beta Ti Alloy, Ti-5553 Under High Pressure Cooling and Lubrication

Year 2023, , 13 - 22, 20.01.2023
https://doi.org/10.47933/ijeir.1188705

Abstract

Ti-5553 (Ti–5Al–5Mo–5V–3Cr) one of the titanium alloys, is a recently developed near beta Titanium alloy, which is frequently used in the aerospace industry such as landing gear. When machining these superalloys, surface integrity can be affected by cutting and cooling conditions. An experimental study was conducted on Ti-5553, also known as beta-like titanium alloy, to understand the role of High Pressure Cooling and Lubrication conditions on surface integrity. In this study, high pressure coolant levels and other machining parameters (cutting speed, feed rate) were chosen as variable factors. These various levels were selected in different values and used in the tests to emphasize the relations of the accepted shear conditions from the effective data in the formation of residual stresses, which is also a parameter of the surface integrity. The results demonstrate the need to prepare coolant pressure levels to improve work surface integrity in such a material. In order to reveal the consistency of the coolant pressure values with other determined cutting parameters and the accuracy of choice, a relationship optimization has been tried to be explained.

References

  • [1] Niknam, S. A., Khettabi, R., & Songmene, V. 2014. Machinability and Machining of Titanium Alloys: a Review. Machining of Titanium Alloys, 1-30.
  • [2] Baili, Maher, et al. 2011. An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability. In: Applied Mechanics and Materials. Trans Tech Publications Ltd,. p. 67-76.
  • [3] Wagner, V., Baili, M., Dessein, G., & Lallement, D. 2009. Behaviour Laws Comparison For Titanium Alloys Machining: Application To Ti5553. In International Conference on Structural Analysis of Advanced Materials pp. Pp-1.
  • [4] Sun, Y., Huang, B., Puleo, D. A., & Jawahir, I. S. 2015. Enhanced Machinability of ti-5553 Alloy from Cryogenic Machining: Comparison with Mql and Flood-Cooled Machining and Modeling. Procedia Cirp, 31, 477-482.
  • [5] Mohd Hadzley, A B., Izamshah, R., Sarah, A. Siti. And Fatin, Nurul, M., 2013. “Finite Element Model of Machining with High Pressure Coolant for Ti-6Al-4V Alloy”. Malaysian Technical Universities Conference on Engineering & Technology MUCET 2012. 53 p. 624-631.
  • [6] Kadir, G., & Antepli, A. 2020. Toz Metalurjisi Yöntemiyle Üretilen Al2024 ve Al6061 Matrisli, Grafen–Karbon Nanotüp Ve Titanyum Dioksik Takviyeli Kompozit Malzemelerin Mikroyapi Ve Mekanik Özelliklerinin Incelenmesi. Turan: Stratejik Arastirmalar Merkezi, 12(48), 282-290.
  • [7] Madyira, D. M., Laubscher, R. F., Van Rensburg, N. J., & Henning, P. F. J. 2013. High Speed Machining Induced Residual Stresses in Grade 5 Titanium Alloy. Proceedings of the Institution of Mechanical Engineers, part L: Journal of Materials: Design and Applications, 227(3), 208-215.
  • [8] Polvorosa, R., Suárez, A., de Lacalle, L. L., Cerrillo, I., Wretland, A., & Veiga, F. 2017. Tool Wear on Nickel Alloys with Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes, 26, 44-56.
  • [9] Shokrani, A., Dhokia, V., & Newman, S. T. 2016. Investigation of The Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti–6Al–4V Titanium Alloy. Journal of Manufacturing Processes, 21, 172-179.
  • [10] Fang, Z., Obikawa, T., 2017. Turning of Inconel 718 Using Inserts with Cooling Channels Under High Pressure jet Coolant Assistance. Journal of Materials Processing Tech. 247 19–28.
  • [11] Liang, X., Liu, Z., Liu, W., Wang, B., & Yao, G. (2019). Surface Integrity Analysis for High-Pressure Jet Assisted Machined Ti-6Al-4V Considering Cooling Pressures and Injection Positions. Journal of Manufacturing Processes, 40, 149-159.
  • [12] Wang, Liang, et al. 2022. "Experimental Research on Chip Morphology of Ti-5553 Cutting under High-Pressure Cooling." Integrated Ferroelectrics 229.1 62-77.
  • [13] Liu, Erliang, et al. 2022. Surface Integrity Analysis Of Ti-5553 Under Different Cooling Strategies. Ferroelectrics, , 593.1: 51-62.
  • [14] Gündoğan, K., & Öztürk, D. K. 2021. Investigation of Properties ZnO, CuO, and TiO2 Reinforced Polypropylene Composites.
  • [15] Khoshaim, A. B., Elsheikh, A. H., Moustafa, E. B., vd. 2021. Prediction of Residual Stresses in Turning of Pure Iron Using Artificial Intelligence-Based Methods. Journal of Materials Research and Technology, 11, 2181-2194.
  • [16] Le Coz, G., Marinescu, M., Moufki, A., Dudzinski, D., 2010. Residual Stresses After Dry Machining of Inconel 718, Experimental Results and Numerical Simulation.
  • [17] Kamruzzaman, M., Dhar, N. R., 2009. Effect of High-Pressure Coolant on Temperature, Chip, Force, Tool Wear, Tool Life and Surface Roughness in Turning AISI 1060 Steel. Gazi University Journal of Science, 22(4), 359-370.
  • [18] Zhao, Xin, et al. 2022, Effect Of Cryogenic Cutting Surface Integrity On Fatigue Life Of Titanium Alloy Ti-5553. Ferroelectrics, 596.1: 115-125.
  • [19] Braham-Bouchnak, Tarek, et al. 2015. "Influence of High-Pressure Coolant Assistance on the Machinability of the Titanium Alloy ti555–3." Machining Science and Technology 19.1 2015, 134-151.
  • [20] Kock Filho, Tarcisio. 2021. Analysis of Different Ti5553 Alloy Cutting Strategies for the Improvement of Tool Life. Phd Thesis.
  • [21] Vishal S. Sharma, Manu Dogra, N.M. Suri, C., 2009. “Cooling Techniques for Improved Productivity in Turning.” 49(6), p 435–453.
  • [22] Kui, G. W. A., Islam, S., Reddy, M. M., Khandoker, N., & Chen, V. L. C. 2021. Recent Progress and Evolution of Coolant Usages in Conventional Machining Methods: a Comprehensive Review. The International Journal of Advanced Manufacturing Technology, 1-38.
  • [23] Ezugwu, E. O. 2005. Key Improvements In The Machining Of Difficult-To-Cut Aerospace Superalloys. International Journal of Machine Tools and Manufacture, 45(12-13), 1353-1367.
  • [24] Sultana, Nazma, and Nikhil Ranjan Dhar. 2022."Effects of High-Pressure Coolant Jets on the Machinability of Ti-6Al-4V Alloy with External Rotary Liquid Applicator.
  • [25] Masmiati, N., Sarhan, A. A., Hassan, M. A. N., & Hamdi, M. 2016. Optimization of Cutting Conditions for Minimum Residual Stress, Cutting Force and Surface Roughness in End Milling of S50c Medium Carbon Steel. Measurement, 86, 253-265.
  • [26] Pimenov, D. Y., Mia, M., Gupta, M. K., vd. 2021. Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect. Journal of Materials Research and Technology, 11, 719-753.
  • [27] Roy, S., Joshi, K. K., Sahoo, A. K., & Das, R. K. 2018. Machining of Ti-6Al-4V ELI alloy: a Brief Review. In IOP Conference Series: Materials Science and Engineering Vol. 390, No. 1.
  • [28] Hatt, O., Crawforth, P., & Jackson, M. 2017. On The Mechanism Of Tool Crater Wear During Titanium Alloy Machining. Wear, 374, 15-20.
  • [29] Outeiro, J., Cheng, W., Chinesta, F., & Ammar, A. 2022. Modelling and Optimization of Machining of Ti-6Al-4V Titanium Alloy Using Machine Learning and Design of Experiments Methods. Journal of Manufacturing and Materials Processing, 6(3), 58.
  • [30] Yünlü, L., Çolak, O., et al. "Taguchi Doe Analysis of Surface Integrity for High Pressure Jet Assisted Machining of Inconel 718", Procedia CIRP, 2014

Yakın Beta Ti Alaşımı, Ti-5553'ün Yüksek Basınçlı Soğutma ve Yağlama Altında İşlenmesinde Kalıntı Gerilme Analizi

Year 2023, , 13 - 22, 20.01.2023
https://doi.org/10.47933/ijeir.1188705

Abstract

Titanyum alaşımlarından biri olan Ti-5553 (Ti–5Al–5Mo–5V–3Cr), iniş takımı gibi havacılık endüstrisinde sıklıkla kullanılan, yakın zamanda geliştirilmiş betaya yakın bir Titanyum alaşımıdır. Bu süper alaşımları işlerken, yüzey bütünlüğü kesme ve soğutma koşullarından etkilenebilir. Yüksek Basınçlı Soğutma ve Yağlama koşullarının yüzey bütünlüğü üzerindeki rolünü anlamak için beta benzeri titanyum alaşımı olarak da bilinen Ti-5553 üzerinde deneysel bir çalışma yapılmıştır. Bu çalışmada, yüksek basınçlı kesme sıvısı seviyeleri ve diğer işleme parametreleri (kesme hızı, ilerleme hızı) değişken faktörler olarak seçilmiştir. Bu çeşitli seviyeler farklı değerlerde seçilmiş ve aynı zamanda yüzey bütünlüğünün bir parametresi olan artık gerilmelerin oluşumunda etkin verilerden kabul edilen kesme koşullarının ilişkilerini vurgulamak için deneylerde kullanılmıştır. Sonuçlar, böyle bir malzemede çalışma yüzeyi bütünlüğünü iyileştirmek için soğutma sıvısı basınç seviyelerinin hazırlanması gerektiğini göstermektedir. Soğutma sıvısı basınç değerlerinin belirlenen diğer kesme parametreleri ile tutarlılığını ve seçimin doğruluğunu ortaya koymak için bir ilişki optimizasyonu açıklanmaya çalışılmıştır.

References

  • [1] Niknam, S. A., Khettabi, R., & Songmene, V. 2014. Machinability and Machining of Titanium Alloys: a Review. Machining of Titanium Alloys, 1-30.
  • [2] Baili, Maher, et al. 2011. An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability. In: Applied Mechanics and Materials. Trans Tech Publications Ltd,. p. 67-76.
  • [3] Wagner, V., Baili, M., Dessein, G., & Lallement, D. 2009. Behaviour Laws Comparison For Titanium Alloys Machining: Application To Ti5553. In International Conference on Structural Analysis of Advanced Materials pp. Pp-1.
  • [4] Sun, Y., Huang, B., Puleo, D. A., & Jawahir, I. S. 2015. Enhanced Machinability of ti-5553 Alloy from Cryogenic Machining: Comparison with Mql and Flood-Cooled Machining and Modeling. Procedia Cirp, 31, 477-482.
  • [5] Mohd Hadzley, A B., Izamshah, R., Sarah, A. Siti. And Fatin, Nurul, M., 2013. “Finite Element Model of Machining with High Pressure Coolant for Ti-6Al-4V Alloy”. Malaysian Technical Universities Conference on Engineering & Technology MUCET 2012. 53 p. 624-631.
  • [6] Kadir, G., & Antepli, A. 2020. Toz Metalurjisi Yöntemiyle Üretilen Al2024 ve Al6061 Matrisli, Grafen–Karbon Nanotüp Ve Titanyum Dioksik Takviyeli Kompozit Malzemelerin Mikroyapi Ve Mekanik Özelliklerinin Incelenmesi. Turan: Stratejik Arastirmalar Merkezi, 12(48), 282-290.
  • [7] Madyira, D. M., Laubscher, R. F., Van Rensburg, N. J., & Henning, P. F. J. 2013. High Speed Machining Induced Residual Stresses in Grade 5 Titanium Alloy. Proceedings of the Institution of Mechanical Engineers, part L: Journal of Materials: Design and Applications, 227(3), 208-215.
  • [8] Polvorosa, R., Suárez, A., de Lacalle, L. L., Cerrillo, I., Wretland, A., & Veiga, F. 2017. Tool Wear on Nickel Alloys with Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes, 26, 44-56.
  • [9] Shokrani, A., Dhokia, V., & Newman, S. T. 2016. Investigation of The Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti–6Al–4V Titanium Alloy. Journal of Manufacturing Processes, 21, 172-179.
  • [10] Fang, Z., Obikawa, T., 2017. Turning of Inconel 718 Using Inserts with Cooling Channels Under High Pressure jet Coolant Assistance. Journal of Materials Processing Tech. 247 19–28.
  • [11] Liang, X., Liu, Z., Liu, W., Wang, B., & Yao, G. (2019). Surface Integrity Analysis for High-Pressure Jet Assisted Machined Ti-6Al-4V Considering Cooling Pressures and Injection Positions. Journal of Manufacturing Processes, 40, 149-159.
  • [12] Wang, Liang, et al. 2022. "Experimental Research on Chip Morphology of Ti-5553 Cutting under High-Pressure Cooling." Integrated Ferroelectrics 229.1 62-77.
  • [13] Liu, Erliang, et al. 2022. Surface Integrity Analysis Of Ti-5553 Under Different Cooling Strategies. Ferroelectrics, , 593.1: 51-62.
  • [14] Gündoğan, K., & Öztürk, D. K. 2021. Investigation of Properties ZnO, CuO, and TiO2 Reinforced Polypropylene Composites.
  • [15] Khoshaim, A. B., Elsheikh, A. H., Moustafa, E. B., vd. 2021. Prediction of Residual Stresses in Turning of Pure Iron Using Artificial Intelligence-Based Methods. Journal of Materials Research and Technology, 11, 2181-2194.
  • [16] Le Coz, G., Marinescu, M., Moufki, A., Dudzinski, D., 2010. Residual Stresses After Dry Machining of Inconel 718, Experimental Results and Numerical Simulation.
  • [17] Kamruzzaman, M., Dhar, N. R., 2009. Effect of High-Pressure Coolant on Temperature, Chip, Force, Tool Wear, Tool Life and Surface Roughness in Turning AISI 1060 Steel. Gazi University Journal of Science, 22(4), 359-370.
  • [18] Zhao, Xin, et al. 2022, Effect Of Cryogenic Cutting Surface Integrity On Fatigue Life Of Titanium Alloy Ti-5553. Ferroelectrics, 596.1: 115-125.
  • [19] Braham-Bouchnak, Tarek, et al. 2015. "Influence of High-Pressure Coolant Assistance on the Machinability of the Titanium Alloy ti555–3." Machining Science and Technology 19.1 2015, 134-151.
  • [20] Kock Filho, Tarcisio. 2021. Analysis of Different Ti5553 Alloy Cutting Strategies for the Improvement of Tool Life. Phd Thesis.
  • [21] Vishal S. Sharma, Manu Dogra, N.M. Suri, C., 2009. “Cooling Techniques for Improved Productivity in Turning.” 49(6), p 435–453.
  • [22] Kui, G. W. A., Islam, S., Reddy, M. M., Khandoker, N., & Chen, V. L. C. 2021. Recent Progress and Evolution of Coolant Usages in Conventional Machining Methods: a Comprehensive Review. The International Journal of Advanced Manufacturing Technology, 1-38.
  • [23] Ezugwu, E. O. 2005. Key Improvements In The Machining Of Difficult-To-Cut Aerospace Superalloys. International Journal of Machine Tools and Manufacture, 45(12-13), 1353-1367.
  • [24] Sultana, Nazma, and Nikhil Ranjan Dhar. 2022."Effects of High-Pressure Coolant Jets on the Machinability of Ti-6Al-4V Alloy with External Rotary Liquid Applicator.
  • [25] Masmiati, N., Sarhan, A. A., Hassan, M. A. N., & Hamdi, M. 2016. Optimization of Cutting Conditions for Minimum Residual Stress, Cutting Force and Surface Roughness in End Milling of S50c Medium Carbon Steel. Measurement, 86, 253-265.
  • [26] Pimenov, D. Y., Mia, M., Gupta, M. K., vd. 2021. Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect. Journal of Materials Research and Technology, 11, 719-753.
  • [27] Roy, S., Joshi, K. K., Sahoo, A. K., & Das, R. K. 2018. Machining of Ti-6Al-4V ELI alloy: a Brief Review. In IOP Conference Series: Materials Science and Engineering Vol. 390, No. 1.
  • [28] Hatt, O., Crawforth, P., & Jackson, M. 2017. On The Mechanism Of Tool Crater Wear During Titanium Alloy Machining. Wear, 374, 15-20.
  • [29] Outeiro, J., Cheng, W., Chinesta, F., & Ammar, A. 2022. Modelling and Optimization of Machining of Ti-6Al-4V Titanium Alloy Using Machine Learning and Design of Experiments Methods. Journal of Manufacturing and Materials Processing, 6(3), 58.
  • [30] Yünlü, L., Çolak, O., et al. "Taguchi Doe Analysis of Surface Integrity for High Pressure Jet Assisted Machining of Inconel 718", Procedia CIRP, 2014
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Lokman Yünlü 0000-0003-1625-995X

Publication Date January 20, 2023
Acceptance Date November 12, 2022
Published in Issue Year 2023

Cite

APA Yünlü, L. (2023). Residual Stress Analysis in Machining of a Near Beta Ti Alloy, Ti-5553 Under High Pressure Cooling and Lubrication. International Journal of Engineering and Innovative Research, 5(1), 13-22. https://doi.org/10.47933/ijeir.1188705

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License