Research Article
BibTex RIS Cite

TEKSTİL GERI DÖNÜŞÜMÜ YOLUYLA SÜRDÜRÜLEBİLİRLİK: İPLİĞİN YENIDEN KULLANIMI, ÇEVRE VE İNSAN SAĞLIĞINA ETKİSİ

Year 2024, , 98 - 105, 14.07.2024
https://doi.org/10.47933/ijeir.1437253

Abstract

Ekonomik büyüme ve refah artışı hedeflerini gerçekleştirme uğruna, dünya kaynaklarını kayıtsızca tüketilmekte ve çok yüksek miktarlarda atık oluşumuna neden olmaktadır. Üretim ve tüketim fazlarından oluşan bu dengesizlik, ekosistemin olumsuz etkilenmesine neden olmuştur. Türkiye'de, telef geri kazanım sektörü önemli bir sektör olmasına rağmen atık yönetimi konusunda toplumsal duyarlılığın sağlanması, araştırma geliştirme çalışmaları, tekstil atıklarının yüksek katma değerli ürünlere çevrilmesi konularında ilave çalışmalar yapılmasına ihtiyaç duyulmaktadır. Türkiye’de atıkların önemli bir bölümü iplik üretiminde kullanılmaktadır. Bu çalışmada; sürdürülebilirlik için bir işletmede pamuk ipliği teleflerinin geri dönüşüm işlemleri üzerine bir araştırma yapılmıştır. Ne 10, Ne 20 ve Ne 30 olmak üzere 3 farklı iplik numarasında, %10-50 telef içeren ipliklerin bulanık mantık modellemesi ile kopma mukavemeti değerleri tahminlenmiş ayrıca tekstil atıklarının çevre ve insan sağlığına etkileri incelenmiştir.

References

  • [1] Aishwariya, S., & Amsamani, S. (2012). Evaluating the efficacy of compost evolved from bio-managing cotton textile waste. Journal of Environmental Research 6: 941–952.
  • [2] Avelar, N.V., Rezende A. A., & Carneiro, A. (2016). Evaluation of briquettes made from textile industry solid waste. Renewable Energy 91: 417–424.
  • [3] Béchir, W., Béchir, A., & Mohamed, B.H. (2018). Industrial cotton waste: Recycling, Reclaimed fiber behavior and quality prediction of its blend. Tekstil ve Konfeksiyon, 28(1), 14-20.
  • [4] Brooks, A., & Simon, D. (2012). Unravelling the relationships between used-clothing imports and the decline of african clothing industries. Development and Change 43: 1265–1290.
  • [5] Eser, B., Çelik, P., Çay, A., & Akgümüş, D. 2016. Tekstil ve konfeksiyon sektöründe sürdürülebilirlik ve geri dönüşüm olanakları. Tekstil ve Mühendis, 23(101), 43-60.
  • [6] Hassaan, M.A., & El Nemr, A. (2017). Health and environmental impacts of dyes: Mini-review. American J. Environ. Sci. Eng. 1(3), 64-67.
  • [7] Hasanzadeh, E., Mirmohamadsadeghi, S., & Karimi, K. (2018). Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 218: 41–48.
  • [9] Hu, Y., Du, C., & Leu, S. Y. (2018). Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resources, Conservation and Recycling 129: 27–35.
  • [9] Sandina, G., & Peters G.M. (2018). Environmental impact of textile reuse and recycling-A review. Journal of Cleaner Production, 184, 353-365,
  • [10] Woolridge, A.C., Ward G.D., Phillips, P.S., Collins, M., & Gandy, S. (2006). Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: An UK energy saving perspective, Resources. Conservation and Recycling, 46(1), 94-103,
  • [11] Mishra, R., Behera, B., & Militky, J. (2014). Recycling of textile waste into green composites: Performance characterization. Polymer Composites 35: 1960–1967.
  • [12] Rana, S., Pichandi, S., Karunamoorthy, S., Bhattacharyya, A., Parveen, S., & Fangueiro, R. (2015). Environmental and social assessment of apparel manufacturing, carbon footprint of textile and clothing products. Handbook of sustainable apparel production, 141-165.
  • [13] Vadicherla, T.,& Saravanan, D. (2017). Effect of Blend ratio on the quality characteristics of recycled polyester/cotton blended ring spun yarn. Fibres text. East. Eur, 2(122), 48-52.
  • [14] Koo, H.J., Chang, G.S., Kim, S.H., Hahm, W.G., & Park, S.Y. (2013). Effects of recycling processes on physical, mechanical and degradation properties of PET yarns. Fibers Polym. 14(12), 2083-2087.
  • [15] Uyanık, S., Parlakyiğit, P., & Ovalı, S. (2022). İplik atıklarından kapalı döngü geri dönüşüm iplik üretimi ve fiziksel özelliklerinin sürdürülebilirlik kapsamında araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 1087-1102.
  • [16] Akarslan, K. F., & Kodaloğlu, M. (2023). Determining the drying rates of fabrics with different knit structures by fuzzy logic method. International Journal Of Computational And Experimental Science And Engineering, 9, 191-196.
  • [17] Akarslan Kodaloğlu, F., & Kodaloğlu, M. (2023). Fuzzy logic control (flc) for a yarn conditioning system.
  • International Journal of Engineering and Innovative Research, 5(3), 170-179.
  • [18] Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2023). Evaluation of noise on ring spinning machines. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(2), 768-775.
  • [19] Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2022). Evaluation of thermal comfort in terms of occupational safety in weavıng facilities by fuzzy logic. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 273-279.
  • [20] Akarslan, F., Kunduz, M., Üçgül, İ., Kodaloğlu, M., & Dayık, M., Konveksiyon Kurutucularda Kumaş Kurutma İşleminin Bulanık Mantık Metodu ile Analizi. Fashion &Tech Dergisi, Nisan 2005
  • [21] Akarslan Kodaloğlu, F., Elbir, A., & Şahin, M. E., (2023). Wool drying process ın heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, Vol.27, Issue 4B. DOI: 10.2298/TSCI2304043A.
  • [22] Akarslan Kodaloğlu, F. (2023). Fuzzy modeling applied to a microwave dryer: Cotton weaving fabric drying process, Uluslararası Teknolojik Bilimler Dergisi, c. 15, sayı. 1, ss. 19-26.
  • [23] Akarslan, F. (2007). Dokuma kumaşların kuruma hızı değerlerinin bulanık mantık metodu ile belirlenmesi. Tekstil Teknolojileri Elektronik Dergisi, 1(2), 15-23.
  • [24] Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 19, sy. 1, ss. 10-22.
  • [25] Wanassi, B., Azzouz, B., & Hassen, M.B. (2016). Value-Added waste cotton yarn: Optimization of recycling pocess and spinning of reclaimed fibers. Industr. Crops and Products, 87, 27-32.
  • [26] Khan, M. K. R., Hossain, M. M., & Sarker, R.C. (2015). Statistical analyses and predicting the properties of cotton/waste blended open-end rotor yarn using taguchi OA design. Int. J. Textile sci. 4(2), 27-35.
  • [27] Waste yarn carding machine. (2023). https://www.3recycling.com/tr/products-detail-14143/Accessed 20.12.2023.
  • [28] Türemen, M., Demir, A., & Özdoğan, E. (2019). Tekstil endüstrisi için geri dönüşüm ve önemi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 805-809.
  • [29] Geysoğlu, M. (2022). Sürdürülebilirlik bağlamında cehri ve pinar bitkileriyle pamuklu kumaşların boyanması ve boyamanın kumaş performansına etkisi. International Journal Of Social Humanities Sciences Research, 9(90), 2474-2484.

SUSTAINABILITY THROUGH TEXTILES RECYCLING: YARN REUSE, ENVIRONMENTAL AND HUMAN HEALTH IMPACT

Year 2024, , 98 - 105, 14.07.2024
https://doi.org/10.47933/ijeir.1437253

Abstract

For the sake of achieving the goals of economic growth and welfare increase, world resources are consumed recklessly and cause the generation of very high amounts of waste. This imbalance, consisting of production and consumption phases, has caused the ecosystem to be negatively affected. Although the waste recycling sector is an important sector in Turkey, additional studies are needed to ensure social awareness on waste management, research and development studies, and conversion of textile waste into high value-added products. A significant part of the waste in Turkey is used in yarn production. In this study; A research was conducted on the recycling processes of cotton yarn waste in a business for sustainability. Breaking strength values of yarns containing 10-50% waste in 3 different yarn counts, namely Ne 10, Ne 20 and Ne 30, were estimated by fuzzy logic modeling and the effects of textile waste on the environment and human health were examined.

References

  • [1] Aishwariya, S., & Amsamani, S. (2012). Evaluating the efficacy of compost evolved from bio-managing cotton textile waste. Journal of Environmental Research 6: 941–952.
  • [2] Avelar, N.V., Rezende A. A., & Carneiro, A. (2016). Evaluation of briquettes made from textile industry solid waste. Renewable Energy 91: 417–424.
  • [3] Béchir, W., Béchir, A., & Mohamed, B.H. (2018). Industrial cotton waste: Recycling, Reclaimed fiber behavior and quality prediction of its blend. Tekstil ve Konfeksiyon, 28(1), 14-20.
  • [4] Brooks, A., & Simon, D. (2012). Unravelling the relationships between used-clothing imports and the decline of african clothing industries. Development and Change 43: 1265–1290.
  • [5] Eser, B., Çelik, P., Çay, A., & Akgümüş, D. 2016. Tekstil ve konfeksiyon sektöründe sürdürülebilirlik ve geri dönüşüm olanakları. Tekstil ve Mühendis, 23(101), 43-60.
  • [6] Hassaan, M.A., & El Nemr, A. (2017). Health and environmental impacts of dyes: Mini-review. American J. Environ. Sci. Eng. 1(3), 64-67.
  • [7] Hasanzadeh, E., Mirmohamadsadeghi, S., & Karimi, K. (2018). Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 218: 41–48.
  • [9] Hu, Y., Du, C., & Leu, S. Y. (2018). Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resources, Conservation and Recycling 129: 27–35.
  • [9] Sandina, G., & Peters G.M. (2018). Environmental impact of textile reuse and recycling-A review. Journal of Cleaner Production, 184, 353-365,
  • [10] Woolridge, A.C., Ward G.D., Phillips, P.S., Collins, M., & Gandy, S. (2006). Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: An UK energy saving perspective, Resources. Conservation and Recycling, 46(1), 94-103,
  • [11] Mishra, R., Behera, B., & Militky, J. (2014). Recycling of textile waste into green composites: Performance characterization. Polymer Composites 35: 1960–1967.
  • [12] Rana, S., Pichandi, S., Karunamoorthy, S., Bhattacharyya, A., Parveen, S., & Fangueiro, R. (2015). Environmental and social assessment of apparel manufacturing, carbon footprint of textile and clothing products. Handbook of sustainable apparel production, 141-165.
  • [13] Vadicherla, T.,& Saravanan, D. (2017). Effect of Blend ratio on the quality characteristics of recycled polyester/cotton blended ring spun yarn. Fibres text. East. Eur, 2(122), 48-52.
  • [14] Koo, H.J., Chang, G.S., Kim, S.H., Hahm, W.G., & Park, S.Y. (2013). Effects of recycling processes on physical, mechanical and degradation properties of PET yarns. Fibers Polym. 14(12), 2083-2087.
  • [15] Uyanık, S., Parlakyiğit, P., & Ovalı, S. (2022). İplik atıklarından kapalı döngü geri dönüşüm iplik üretimi ve fiziksel özelliklerinin sürdürülebilirlik kapsamında araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 1087-1102.
  • [16] Akarslan, K. F., & Kodaloğlu, M. (2023). Determining the drying rates of fabrics with different knit structures by fuzzy logic method. International Journal Of Computational And Experimental Science And Engineering, 9, 191-196.
  • [17] Akarslan Kodaloğlu, F., & Kodaloğlu, M. (2023). Fuzzy logic control (flc) for a yarn conditioning system.
  • International Journal of Engineering and Innovative Research, 5(3), 170-179.
  • [18] Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2023). Evaluation of noise on ring spinning machines. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(2), 768-775.
  • [19] Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2022). Evaluation of thermal comfort in terms of occupational safety in weavıng facilities by fuzzy logic. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 273-279.
  • [20] Akarslan, F., Kunduz, M., Üçgül, İ., Kodaloğlu, M., & Dayık, M., Konveksiyon Kurutucularda Kumaş Kurutma İşleminin Bulanık Mantık Metodu ile Analizi. Fashion &Tech Dergisi, Nisan 2005
  • [21] Akarslan Kodaloğlu, F., Elbir, A., & Şahin, M. E., (2023). Wool drying process ın heat-pump-assisted dryer by fuzzy logic modelling. Thermal Science, Vol.27, Issue 4B. DOI: 10.2298/TSCI2304043A.
  • [22] Akarslan Kodaloğlu, F. (2023). Fuzzy modeling applied to a microwave dryer: Cotton weaving fabric drying process, Uluslararası Teknolojik Bilimler Dergisi, c. 15, sayı. 1, ss. 19-26.
  • [23] Akarslan, F. (2007). Dokuma kumaşların kuruma hızı değerlerinin bulanık mantık metodu ile belirlenmesi. Tekstil Teknolojileri Elektronik Dergisi, 1(2), 15-23.
  • [24] Kodaloğlu, M., Akarslan Kodaloğlu, F. (2024). Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 19, sy. 1, ss. 10-22.
  • [25] Wanassi, B., Azzouz, B., & Hassen, M.B. (2016). Value-Added waste cotton yarn: Optimization of recycling pocess and spinning of reclaimed fibers. Industr. Crops and Products, 87, 27-32.
  • [26] Khan, M. K. R., Hossain, M. M., & Sarker, R.C. (2015). Statistical analyses and predicting the properties of cotton/waste blended open-end rotor yarn using taguchi OA design. Int. J. Textile sci. 4(2), 27-35.
  • [27] Waste yarn carding machine. (2023). https://www.3recycling.com/tr/products-detail-14143/Accessed 20.12.2023.
  • [28] Türemen, M., Demir, A., & Özdoğan, E. (2019). Tekstil endüstrisi için geri dönüşüm ve önemi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 805-809.
  • [29] Geysoğlu, M. (2022). Sürdürülebilirlik bağlamında cehri ve pinar bitkileriyle pamuklu kumaşların boyanması ve boyamanın kumaş performansına etkisi. International Journal Of Social Humanities Sciences Research, 9(90), 2474-2484.
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Murat Kodaloğlu 0000-0001-6644-8068

Early Pub Date June 24, 2024
Publication Date July 14, 2024
Submission Date February 14, 2024
Acceptance Date May 7, 2024
Published in Issue Year 2024

Cite

APA Kodaloğlu, M. (2024). SUSTAINABILITY THROUGH TEXTILES RECYCLING: YARN REUSE, ENVIRONMENTAL AND HUMAN HEALTH IMPACT. International Journal of Engineering and Innovative Research, 6(2), 98-105. https://doi.org/10.47933/ijeir.1437253

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License